• 제목/요약/키워드: Aircraft Performance

검색결과 1,117건 처리시간 0.037초

항공기 강하 성능과 FMS 강하 정보에 기반한 표준계기도착절차와 계기접근절차의 운항 효율성 향상에 관한 연구 (A Study for Enhancing Efficiency of STAR and IAP for the Prospect of Aircraft Descent Performance and FMS Descent Guidance Information)

  • 이충섭;이현진;백호종;박장훈
    • 한국항공운항학회지
    • /
    • 제31권1호
    • /
    • pp.79-91
    • /
    • 2023
  • In response to the recent surge in aviation demand, major airports and aviation authorities continue to make efforts to formulate arrival and approach procedures that take into account efficient aircraft separation, noise and environmental issues of carbon (CO2) emissions. In order to ensure efficient traffic control and environmental issues, as a result, a new concept Trombone, Point Merge, etc. have been introduced and widely used in the domestic airspace. However, these new concept procedures which do not properly reflect the characteristics of the aircraft operation performance and the FMS vertical descent guidance hinder flight efficiency as well as bring in turn negative factors such as level-off flight and the use of drag device at the busiest phase of the flight descent operation, like the Continuous Descent Operation (CDO). Accordingly, throughout modification the current Standard Terminal Arrival Route (STAR) and Instrument Approach Procedure(IAP) that reflect the aircraft descent performance and the FMS guidance, the flight operation safety and efficiency is expected to be improved eventually. We herewith analyze and propose the way of improving flight efficiency in the arrival operation procedure by supplementary modification which consequently contribute to the aviation industry international competitiveness.

신속한 항공기 개발을 위한 통합 개념설계 프로세스에 대한 연구 (Advanced Design Synthesis Process for Rapid Aircraft Development)

  • 박승빈;박진환;전권수;김상호;이재우
    • 시스템엔지니어링학술지
    • /
    • 제9권2호
    • /
    • pp.83-90
    • /
    • 2013
  • Integrated aircraft synthesis process for rapid analysis and design is described in this paper. Data flow between different analysis fields is described in details. All the data are divided into several groups according to importance and source of the data. Analysis of design requirements and certification regulations is carried out to determine baseline configuration of an aircraft. Overall design process can be divided into initial sizing, conceptual and preliminary design phases. Basic data for conceptual design are obtained from initial sizing, CAD and geometry analysis. Basic data are required input for weight, aerodynamics and propulsion analyses. Results of this analysis are used for stability and control, performance, mission, and load analysis. Feasibility of design is verified based on analysis results of each discipline. Design optimization that involves integrated process for aircraft analysis is performed to determine optimum configuration of an aircraft on a conceptual design stage. The process presented in this paper was verified to be used for light aircraft design.

민간 항공기 인증기술을 이용한 군용항공기 감항인증 효율화 기술동향 (Current trends of Military Air'craft Airworthiness certification using Civil Aircraft Certification Basis)

  • 최석;김성찬
    • 항공우주산업기술동향
    • /
    • 제6권2호
    • /
    • pp.154-160
    • /
    • 2008
  • 항공기의 개발에 있어 비행시험은 통상적으로 크게 민간용과 군용의 두 분류로 나눌 수 있다. 민간용 항공기의 비행시험은 해당 정부의 감항당국에서 제시하는 안전/성능 요구도를 항공기가 충족하는지 여부를 개발자가 확인하는 것이다. 이에 반해 군용항공기의 비행시험은 소요제기를 한 해당 정부의 요구도를 항공 기기가 충족하는지 여부를 개발자의 사전점검(DT: Developmental Test) 이후에 정부의 독립적인 평가팀에 의해 Operational Test(OT)가 수행되어 최종적으로 확인하는 과정으로 진행된다. 이 논문에서는 민수용 항공기와 군용항공기 각각의 목적상 추진되던 인증업무가 비용의 효율성 제고, 민간항공기의 군용화 추세에 따라 민간항공기 인증방안을 사용해 군용항공기의 감항인증을 추진하는 선진국의 최신동향을 살펴보고 국내의 여건 및 향후 발전발향을 제시하고자 한다.

  • PDF

항공기 비정상 자세, 고도 및 속도 회복을 위한 자동회복장치 설계 및 검증에 관한 연구 (A Study on Design and Validation of Pilot Activated Recovery System to Recover Aircraft Abnormal Attitude, Altitude and Speed)

  • 김종섭;강임주
    • 제어로봇시스템학회논문지
    • /
    • 제14권12호
    • /
    • pp.1302-1312
    • /
    • 2008
  • Relaxed Static Stability(RSS) has been applied to improve flight performance of modern version supersonic jet fighters. Flight control systems are necessary to stabilize an unstable aircraft and to provide adequate handling qualities. Also, flight control systems of modern aircraft employ many safety measure to cope with emergency situations such as a pilot unknown attitude flight conditions of an aircraft in night flight-testing. This situation is dangerous because the aircraft can lose if the pilot not take recognizance of situation. The system called the "Pilot Activated Recovery System" or PARS, provided a pilot initiated automatic maneuver capable of an aircraft recoveries in situations of unusual attitudes, speed and altitude. This paper addresses the concept of PARS with AARS(Automatic Attitude Recovery System), ATCS(Automatic Thrust Control System) and MARES(Minimum Altitude Recovery Estimation System), and this control law is designed by nonlinear control law design process based on model of supersonic jet trainer. And, this control law is verified by real-time pilot evaluation using an HQS(Handling Quality Simulator). The result of evaluation reveals that the these systems support recovery of an aircraft unusual attitude and speed, and improve a safety of an aircraft.

Catching-Up and National Environment: The Case of the Korean Aircraft Industry

  • Hwang, Chin-Young
    • 한국기술혁신학회:학술대회논문집
    • /
    • 한국기술혁신학회 2000년도 추계 학술대회(The 2000 Autumn Conference of korea Technology Inovation Society)(한국기술혁신학회)
    • /
    • pp.227-245
    • /
    • 2000
  • Korean firms have attempted to catch up in the aircraft industry during last quarter century. Korean firms have built up their capabilities by moving from parts manufacturing through subassembly to system integration. The number of projects carried out and the intensity of technological effort undertaken by firms strongly influences market position and firm performance. However, successful catching up is not simply dependent on capability building within the firm. The national environment (Porter, 1990) in which firms are located plays a pivotal role. The Korean government has been effective in creating a favorable environ-ment in many areas, but has not been able to replicate this success in the aircraft industry. Opportunities for learning in the aircraft industry have been hampered by the small size of the Korean civilian aircraft market and the sophisticated requirements of military systems. A policy of domestic rivalry in airframe manufacture has created too many firms for such a small market. The ability of Korean firms to catch up in the aircraft industry depends on both the internal capabilities of firms as well as appropriate government policies and the involve- ment of government research institutions and universities over an extended period of time. There have been many studies about the catching up of developing countries in mass production (such as automobile, consumer electronics, and recently DRAM), but few in complex systems, such as aircraft.

  • PDF

우리나라 항공기 시스템 개조 인증 절차 개선 연구 (A Study on improvement of Korean aircraft system modification certification procedure)

  • 유병선;임인규
    • 한국항행학회논문지
    • /
    • 제25권3호
    • /
    • pp.185-193
    • /
    • 2021
  • 항공기의 성능 개선이나 관련 법규의 요건 만족을 위해 항공기 시스템 개조는 필요하다. 이러한 개조를 위해 기술력이나 항공기의 감항성을 위한 설계 검증, 형식 증명에 대한 부가형식증명(STC)의 인증 절차는 적절한 표준이 요구된다. 본 연구는 국내 항공기 개조 현황과 수요를 분석하고 현재의 부가형식증명 절차를 검토하여 그 문제점을 진단한다. 또한 늘어난 항공기의 수명에 대하여 개조기술 및 인증 능력 향상방안을 연구한 결과 개조 조직의 인가와 분야별 전문 엔지니어 자격 임명 그리고 교육 체계 개선이 요구되었고 국내 부가형식증명 절차의 개선을 도출하였다.

한국형모델의 항공기 관측 온도의 정적 편차 보정 연구 (A Study of Static Bias Correction for Temperature of Aircraft based Observations in the Korean Integrated Model)

  • 최다영;하지현;황윤정;강전호;이용희
    • 대기
    • /
    • 제30권4호
    • /
    • pp.319-333
    • /
    • 2020
  • Aircraft observations constitute one of the major sources of temperature observations which provide three-dimensional information. But it is well known that the aircraft temperature data have warm bias against sonde observation data, and therefore, the correction of aircraft temperature bias is important to improve the model performance. In this study, the algorithm of the bias correction modified from operational KMA (Korea Meteorological Administration) global model is adopted in the preprocessing of aircraft observations, and the effect of the bias correction of aircraft temperature is investigated by conducting the two experiments. The assimilation with the bias correction showed better consistency in the analysis-forecast cycle in terms of the differences between observations (radiosonde and GPSRO (Global Positioning System Radio Occultation)) and 6h forecast. This resulted in an improved forecasting skill level of the mid-level temperature and geopotential height in terms of the root-mean-square error. It was noted that the benefits of the correction of aircraft temperature bias was the upper-level temperature in the midlatitudes, and this affected various parameters (winds, geopotential height) via the model dynamics.

강섬유를 적용한 원전 격납건물의 항공기 충돌해석 (Aircraft Impact Analysis of Steel Fiber Reinforced Containment Building)

  • 서동원;노혁천
    • 한국전산구조공학회논문집
    • /
    • 제26권2호
    • /
    • pp.157-164
    • /
    • 2013
  • 본 연구에서는 여객용 항공기 충돌 시 강섬유보강콘크리트를 사용한 철근콘크리트 원전 격납건물의 구조적 거동을 유한요소해석을 이용하여 고찰한다. 항공기 충돌에 의해 원전 격납건물에 가해지는 하중은 Riera 충격하중 시간함수와 충돌 시 접촉면적을 이용하여 모델링하였다. 강섬유보강콘크리트의 재료모델은 CSCM Concrete Model을 사용하였다. 기존에 제안된 강섬유보강콘크리트의 강도예상모델을 이용하여 재료모델의 입력변수를 결정하였다. 강섬유의 함유량에 따른 원전 격납 건물의 항공기 충돌에 대한 구조적 거동을 상용 유한요소 해석 프로그램인 LS-DYNA를 이용하여 해석하였다. 해석결과를 바탕으로 항공기 충돌에 대한 저항성을 평가하였으며, 보수적인 안전성이 요구되는 원전 격납건물에 강섬유보강콘크리트를 적용할 경우 항공기 충돌에 대한 저항성 증대 효과를 기대할 수 있는 것으로 고찰되었다.

Reconfigurable Flight Control Design for the Complex Damaged Blended Wing Body Aircraft

  • Ahn, Jongmin;Kim, Kijoon;Kim, Seungkeun;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.290-299
    • /
    • 2017
  • Reconfigurable flight control using various kinds of adaptive control methods has been studied since the 1970s to enhance the survivability of aircraft in case of severe in-flight failure. Early studies were mainly focused on the failure of actuators. Recently, studies of reconfigurable flight controls that can accommodate complex damage (partial wing and tail loss) in conventional aircraft were reported. However, the partial wing loss effects on the aerodynamics of conventional type aircraft are quite different to those of BWB(blended wing body) aircraft. In this paper, a reconfigurable flight control algorithm was designed using a direct model reference adaptive method to overcome the instability caused by a complex damage of a BWB aircraft. A model reference adaptive control was incorporated into the inner loop rate control system enhancing the performance of the baseline control to cope with abrupt loss of stability. Gains of the model reference adaptive control were polled out using the Liapunov's stability theorem. Outer loop attitude autopilot was designed to manage roll and pitch of the BWB UAV as well. A 6-DOF dynamic model was built-up, where the normal flight can be made to switch to the damaged state abruptly reflecting the possible real flight situation. 22% of right wing loss as well as 25% loss for both vertical tail and rudder control surface were considered in this study. Static aerodynamic coefficients were obtained via wind tunnel test. Numerical simulations were conducted to demonstrate the performance of the reconfigurable flight control system.

Fail safe and restructurable flight control system

  • Kanai, K.;Ochi, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.21-29
    • /
    • 1994
  • This paper presents a method to accommodate failures that affect aircraft dynamical characteristics, especially control surface jams on a large transport aircraft. The approach is to use the slow effectors, such as the stabilators or engines, in the feedforward manner. The simulation results indicate the performance of the RFCS. In some cases of control surface jam, the aircraft cannot recover without using the stabilators. Although the inputs to the slow effectors are determined using the nominal parameters, the effects of parameter change can be compensated by adjusting the control parameters for the fast surfaces. In the case of rudder jam, if the remaining control surfaces and the differential thrust cancel the moments produced by the stuck rudder, using the engine control improves time responses and reduces deflection angles of the control surfaces. If not, however, the aircraft starts a large rolling motion following a yawing motion. In that case, the stabilators should be used to damp the induced rolliig motion, instead of trying to directly cancel the moments caused by the stuck rudder. Unfortunately, the proposed control law for the stabilators does not give such inputs, because it does not take into account the dynamical effects which stuck surfaces have on the aircraft motions. However, we have shown through simulation that the aircraft can be recovered by giving the stabilators the control inputs that counteract the induced rolling moment. Besides, the method has also been shown through simulation to be effective in maintaining control during a situation similar to an actual accident. Finally let us mention a problem with the RFCS. As stated above, we have not established a method to select a trim point which call be reached as easily as possible using the remaining control effectors. In fact, recovery performance considerably depends on the trim states. As pointed out in Ref. 11, finding the best trim point for impaired aircraft will be one of the most difficult questions in RFCS design.

  • PDF