• Title/Summary/Keyword: Aircraft Load

Search Result 333, Processing Time 0.023 seconds

A Study on the Optimization of Ni-ZSM-5 Endothermic Catalyst Preparation for Decomposition of n-Dodecane (n-dodecane 분해를 위한 Ni-ZSM-5 흡열촉매 제조 최적화 연구)

  • Hyeonsu Jeong;Younghee Jang;Ye Hwan Lee;Sung Chul Kim;Byung Hun Jeong;Sung Su Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.619-625
    • /
    • 2023
  • In order to solve problems caused by the heat load of hypersonic aircraft, this study examined the optimization of the Si/Al ratio of the catalyst and nickel ion exchange to improve the performance of the hydrocarbon decomposition reaction (endothermic reaction). It was confirmed that the catalysts prepared through Si/Al ratio optimization and nickel ion exchange showed about 10% improvement in heat absorption performance compared to thermal cracking at 4 MPa and 550 ℃. FT-IR and NH3-TPD analyses were found to identify factors affecting activity changes, and it was observed that the Si/Al ratio of the HZSM-5 catalyst was closely correlated with acid site development and catalytic activity. In addition, TGA and O2-TPO analyses were conducted to observe the carbon deposition inhibition properties of the nickel-added catalyst.

Cumulative control output compensation technique for voice coil actuator used in small guided missiles (소형 유도무기용 보이스 코일 구동장치의 누적 제어 출력 보상 기법)

  • Wonsung Lee;Gwang Tae Kim;Choonghee Lee;Yongseon Lee;Seungho Jeong;Sungho Choi
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.4
    • /
    • pp.1-9
    • /
    • 2024
  • In this study, we researched control compensation techniques to enhance control robustness against external forces and responsiveness to output dead zones in direct-actuated voice coil actuators for small guided missiles. An aircraft's wings must optimally control the command angle while managing various nonlinear external forces such as drag, lift, and thrust during flight. The small direct -drive voice coil actuator, when applied, benefits from small current requirements in no-load situations but suffers from diminished control robustness due to rapid increases in control current during external force applications. To address this issue, we designed and implemented a system that compensates for errors by accumulating additional output, thus improving the actuator's responsiveness in control scenarios with external forces. This was verified through experimental results.

In-Plane Extensional Buckling Analysis of Curved Beams under Uniformly Distributed Radial Loads Using DQM (등분포하중 하에서 미분구적법(DQM)을 이용한 곡선 보의 내평면 신장 좌굴해석)

  • Kang, Ki-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.265-274
    • /
    • 2018
  • The increasing use of curved beams in buildings, vehicles, ships, and aircraft has prompted studies directed toward the development of an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic curved beams has been the subject of a large number of investigations. Solutions of the relevant differential equations have been obtained traditionally using standard finite difference or finite element methods. These techniques require a great deal of computer time as the number of discrete nodes becomes relatively large under the conditions of complex geometry and loading. One of the efficient procedures for the solution of partial differential equations is the method of differential quadrature. The differential quadrature method (DQM) has been applied to a large number of cases to overcome the difficulties of the complex algorithms of programming for the computer, as well as the excessive use of storage due to the conditions of complex geometry and loading. The in-plane buckling of curved beams considering the extensibility of the arch axis was analyzed under uniformly distributed radial loads using the DQM. The critical loads were calculated for the member with various parameter ratios, boundary conditions, and opening angles. The results were compared with the precise results by other methods for cases, in which they were available. The DQM, using only a limited number of grid points, provided results that agreed very well (less than 0.3%) with the exact ones. New results according to diverse variations were obtained, showing the important roles in the buckling behavior of curved beams, and can be used in comparisons with other numerical solutions or with experimental test data.

Numerical Analysis of Crash Impact Test for External Auxiliary Fuel Tank of Rotorcraft (회전익항공기용 외부 보조연료탱크 충돌충격시험 수치해석)

  • Kim, Hyun-Gi;Kim, Sungchan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.724-729
    • /
    • 2017
  • The crashworthiness of the fuel tank of a rotorcraft is verified through the crash impact test. The crash impact test has a high risk of failure due to the application of an excessive load, which can seriously affect the overall development schedule of the aircraft. Therefore, a lot of effort has been made to minimize the possibility of failure in the actual test by carrying out a numerical analysis of the crash impact test of the fuel tank in the initial design stage. Recently, an external auxiliary fuel tank was added to increase the cruising distance. In this study, the numerical analysis results of the crash impact test based on several different shapes of the external auxiliary fuel tank are presented, in order to evaluate its crashworthiness. For the numerical analysis, smoothed particle hydrodynamics (SPH), which is one of the fluid-structure coupled analysis methods, is applied and the test conditions prescribed by US military standards are reflected in the analysis conditions. In addition, the material property data previously obtained by the specimen test of the actual fuel tank is applied to the numerical analysis. As a result, the equivalent stress of the fuel tank material itself and the metal fitting is provided and the possibility of acquiring data for designing the crash-worthiness of the external auxiliary fuel tank is evaluated by examining the behavior and working load of the internal mounted components.

Structural Stability Evaluation for Special Vehicle Slewing Bearing using Finite Element Analysis (유한요소해석을 통한 특수차량용 선회베어링의 구조 안전성 평가)

  • Seo, Hyun-Soo;Lee, Ho-Jun;An, Tae-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.511-519
    • /
    • 2021
  • Slewing bearing is applied to the transmission of rotational power of the body and turret in a special vehicle for anti-aircraft weapons that overcomes the enemy flight system approaching at low altitudes with rapid response fire. When the turret load and impact load generated when shooting are combined in performing the combat mission of a special vehicle, structural stability must be secured to achieve a successful function. Among the components of the slewing bearing, the stability of the components against the complex loads acting by the turret drive and shooting was evaluated by considering the shape and material characteristics of the ring-gear, roller, and wire-race. As a research method for stability evaluation, based on engineering theory, the strength characteristics of the components were examined by numerical calculations. Finite element analysis was performed on components using the ANSYS analysis program. The results of theoretical analysis and the results of finite element analysis were very similar. A structural stability evaluation for the slewing bearing, which was performed mainly on the analysis, confirmed that the design strength of the slewing bearing determined in the preliminary design in the early stage of localization development was sufficient.

Effect of modifying the thickness of the plate at the level of the overlap length in the presence of bonding defects on the strength of an adhesive joint

  • Attout Boualem;Sidi Mohamed Medjdoub;Madani Kouider;Kaddouri Nadia;Elajrami Mohamed;Belhouari Mohamed;Amin Houari;Salah Amroune;R.D.S.G. Campilho
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.1
    • /
    • pp.83-103
    • /
    • 2024
  • Adhesive bonding is currently widely used in many industrial fields, particularly in the aeronautics sector. Despite its advantages over mechanical joints such as riveting and welding, adhesive bonding is mostly used for secondary structures due to its low peel strength; especially if it is simultaneously exposed to temperature and humidity; and often presence of bonding defects. In fact, during joint preparation, several types of defects can be introduced into the adhesive layer such as air bubbles, cavities, or cracks, which induce stress concentrations potentially leading to premature failure. Indeed, the presence of defects in the adhesive joint has a significant effect on adhesive stresses, which emphasizes the need for a good surface treatment. The research in this field is aimed at minimizing the stresses in the adhesive joint at its free edges by geometric modifications of the ovelapping part and/or by changing the nature of the substrates. In this study, the finite element method is used to describe the mechanical behavior of bonded joints. Thus, a three-dimensional model is made to analyze the effect of defects in the adhesive joint at areas of high stress concentrations. The analysis consists of estimating the different stresses in an adhesive joint between two 2024-T3 aluminum plates. Two types of single lap joints(SLJ) were analyzed: a standard SLJ and another modified by removing 0.2 mm of material from the thickness of one plate along the overlap length, taking into account several factors such as the applied load, shape, size and position of the defect. The obtained results clearly show that the presence of a bonding defect significantly affects stresses in the adhesive joint, which become important if the joint is subjected to a higher applied load. On the other hand, the geometric modification made to the plate considerably reduces the various stresses in the adhesive joint even in the presence of a bonding defect.

Experimental Study of Adoption of Alternative Refrigerant for Avionic Equipment Cooling System (항공전자기기용 냉각시스템의 대체냉매 적용에 관한 실험적 연구)

  • Kang, Hoon;Jung, Jongho;Jung, Minwoo;Chi, Yongnam;Yoo, Yongseon;Choi, Heeju;Byeon, Youngman;Kim, Youngjin;Oh, Kwangyoon;Kim, Yongchan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.431-439
    • /
    • 2013
  • A cooling system is adopted to control the thermal load from the avionic equipments in an aircraft for stable operation. In this study, an avionic cooling system was designed and manufactured by adopting a vapor compression cycle with a closed-loop air-circulation system to investigate the operating characteristics of an alternative refrigerant. The performance characteristics of a cooling system adopting R236fa as an alternative refrigerant were experimentally determined by varying the refrigerant charging amount, expansion valve opening, and compressor rotation speed. The experimental results were analyzed and compared with those of a cooling system adopting R124 as a refrigerant. The possibility of the adoption of R236fa as an alternative refrigerant was verified, and design solutions were suggested to improve the system efficiency.

Comparison and Analysis of Techniques for Achieving Azimuth Resolution of Imaging Radar (영상레이다의 방위 해상도 구현기법 비교 분석)

  • Hong, In-Pyo;kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.2
    • /
    • pp.185-196
    • /
    • 1997
  • By considering the definition and application of resolution as well as the concept and theory of SAR, the essential contents of the SAR design and analysis are described. This paper is to compare and analyze the resolution performance capability of three techniques for achieving azimuth resolution such as the real aperture, the unfocused and the focused techniques, through the simulation. Simulation is performed to make the restricted conditions for the unfocused technique that can be implemented by the less commputing load of signal processingand the lower cost. Through the mission analysis, the use of SAR image can be applied for estimation of whole situation at the regional area in the field of military demands for tactical purpose as well as civilian demands for the damage of disaster. RPV and sall or medium aircraft are selected to carry the SAR for these purposes and the proper resolution turns ou 5~15 m. The trade-off study of variables through the simulations results in the proper conditions such that range is less 3, 000 m, Wavelength is 1~10 m, and the raw signals and results processed by three techniques for two point targets are exhibited undr such conditions. Therefore, at some points, the result of this paper si proposed for useful applications of unforcused technique in the restricted conditions except the identification of the small target at a long range re- quired for high resolution.

  • PDF

On the Performance Test of the Piezoelectric-Hydraulic Pump (압전유압펌프 성능실험에 대한 연구)

  • Joo, Yong-Hwi;Hwang, Jai-Hyuk;Yang, Ji-Youn;Bae, Jae-Sung;Lee, Jong-Hoon;Kwon, Jun-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.822-829
    • /
    • 2015
  • In this paper, the piezoelectric-hydraulic pump with a piezostack actuator as a driving source has been designed, fabricated, and evaluated for its application to UAV's brake system. The performance requirements of the piezoelectric-hydraulic pump were decided based on the requirements analysis of the target aircraft brake system. The geometric design of the piezoelectric-hydraulic pump to meet the performance requirements of the pump was conducted, and all components of the pump including the spring sheet type check valves were machined with close tolerance. By constructing a test apparatus for the performance check of the piezoelectric-hydraulic pump, the performance characteristics of the pump, such as the outlet flow rate for load-free condition and the outlet oil pressure for closed loop condition, have been evaluated. It has been found by the performance test result that the developed piezoelectric-hydraulic pump satisfies the design requirements effectively.

Position Control of a Pneumatic Cylinder Actuator using PLC and Proximity Sensors (공압 실린더 액츄에이터 위치제어)

  • Kwon, Soon-Hong;Choi, Won-Sik;Chung, Sung-Won;Park, Jong-Min;Kwon, Soon-Goo;So, Jung-Duk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.50-55
    • /
    • 2011
  • The fluid power products are widely used in current industrial area such as automation of products and equipment assembly, high-tech machine tool, aircraft, train, and etc. As the development of industry is in progress, the development of the fluid power products is demanding and it is required in every industrial area. This research proposed a pneumatic system to evaluate displacement accuracy of the pneumatic actuator without external load and to analyze capability of integration of the valve system. The pneumatic system consisted of a combination of pneumatic actuator, four two-port valves, two three-port valves, two pressure valve, a check valve, two proximity sensors, and a program logic controller (PLC). The position controller is based on the PLC connected with the proximity sensors. The maximum air pressure applied for tests was $49.05N/cm^2$ and the displacement accuracy of a stroke was measured using a dial gauge. The supply- and discharge-side of air pressure and the length of the stroke of the pneumatic cylinder were varied The test of the position control of the pneumatic cylinder was carried out 50 times at each supply- and discharge-side air pressure of 24.53/34.34, 29.43/39.24, 34.34/44.15, and $39.24/49.05N/cm^2$ and replicated three times. The accuracy of the displacement of the pneumatic cylinder stroke increased as the supply- and discharge-side of air pressure increased with the stroke length of 133mm. Also the displacement accuracy increased as the stroke length increased with the fixed supply- and discharge-side of air pressure of the pneumatic cylinder as 34.34 and $44.15N/cm^2$, respectively. The most accurate displacement of the pneumatic cylinder was obtained at the supplyand discharge-side of air pressure of 39.24 and $49.05N/cm^2$, respectively, and strokes of 170 and 190mm.