• Title/Summary/Keyword: Aircraft Ground Motion

Search Result 11, Processing Time 0.02 seconds

Modeling and Simulation of Aircraft Motion on the Ground: Part I. Derivation of Equations of Motion

  • Ro, Kapseong;Lee, Haechang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.28-43
    • /
    • 2001
  • Developed in these two series of paper is a complex dynamic model representing the motion of aircraft on the ground and a computer program for numerical simulation. The first part of paper presents the theoretical derivation of equations of motion of the landing gear system based on the physical principle. Developed model is 'structured' in the sense that the undercarriage system is regarded as an assembly of strut, tire, and wheel, where each component is modeled by a separate module. These modules are linked with two external modules-the aircraft and the runway characteristics-to carry out dynamic analysis and numerical simulation of the aircraft motion on the ground. Three sets of coordinate system associated with strut, wheel/tire and runway are defined, and external loads to each component and response characteristics are examined. Lagrangian formulation is used to derive the undercarriage equations of motion relative to the moving aircraft, and the resultant forces and moments from the undercarriage are transformed to aircraft body axes.

  • PDF

A Study of Aircraft Ground Motion (항공기 지상운동 특성에 관한 연구)

  • Song, Won Jong
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.6
    • /
    • pp.17-25
    • /
    • 2017
  • Vertical reaction force between ground and tire is an important parameter determining the ground behavior characteristics of aircraft. This parameter can be used to calculate the lateral force and friction. However, it is hard to obtain this parameter in real-time when the aircraft is taxiing. Therefore, pre-analysis of ground behavior and vertical reaction force should be conducted using ground simulation results to prevent rollover or hazardous scenarios. In this paper, a Landing Gear and Full-Aircraft model was constructed using VI-Aircraft S/W. The roll behavior of aircraft was analyzed using steering simulation results compared with taxi-test data.

A Study on Characteristics of Precession Motion for a Smart Munition (지능형 탄두의 세차운동 특성 해석 및 연구)

  • Ha, Do-Jun;Kim, Byoung-Soo;Kim, In-Keun;Song, Ho-In;Lee, Young-Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.257-265
    • /
    • 2012
  • This paper presents a study on characteristics of precession motion of a smart munition. It's a kind of the Sensor Fuzed Weapon. The particular thing for the smart munition is that it has precession motion in the air while the sensor is searching the ground to detect ground vehicles such as tanks. The smart munition has a cylindrical shape and has a sensor attached on its side. Due to its non-uniform mass distribution, its center of gravity(CG) is located away from the center of volume(CV). In order for the smart munition to detect the target effectively, the ground searching pattern of sensor should have an uniform circular form, and for this, the precession motion of smart munition should be in its steady-state. Finally, it is necessary to choose the right initial conditions at the moment of firing, for the steady-state precession motion during flight.

Passive suppression of helicopter ground resonance instability by means of a strongly nonlinear absorber

  • Bergeot, Baptiste;Bellizzi, Sergio;Cochelin, Bruno
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.271-298
    • /
    • 2016
  • In this paper, we study a problem of passive suppression of helicopter Ground Resonance (GR) using a single degree freedom Nonlinear Energy Sink (NES), GR is a dynamic instability involving the coupling of the blades motion in the rotational plane (i.e. the lag motion) and the helicopter fuselage motion. A reduced linear system reproducing GR instability is used. It is obtained using successively Coleman transformation and binormal transformation. The analysis of the steadystate responses of this model is performed when a NES is attached on the helicopter fuselage. The NES involves an essential cubic restoring force and a linear damping force. The analysis is achieved applying complexification-averaging method. The resulting slow-flow model is finally analyzed using multiple scale approach. Four steady-state responses corresponding to complete suppression, partial suppression through strongly modulated response, partial suppression through periodic response and no suppression of the GR are highlighted. An algorithm based on simple criterions is developed to predict these steady-state response regimes. Numerical simulations of the complete system confirm this analysis of the slow-flow dynamics. A parametric analysis of the influence of the NES damping coefficient and the rotor speed on the response regime is finally proposed.

A Study on Algorithm for Aircraft Collision Avoidance Warning (항공기 충돌 회피 경고 알고리듬 연구)

  • Jung, Myung-Jin;Jang, Se-Ah;Choi, Kee-Young;Kim, Jin-Bok;Yang, Kyung-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.515-522
    • /
    • 2012
  • CFIT(Controlled Flight Into Terrain) is one of the major causes of aircraft accidents. In order to solve this problem, GPWS(Ground Proximity Warning System) is used to generate terrain collision warning using the distance between the aircraft and the underneath ground. Since the GPWS uses the vertical clearance only, it frequently generates false warnings. In this study, a terrain/obstacle collision avoidance warning algorithm was developed for fast flying and highly maneuvering fighters using the flight status and the geographic information. This algorithm condsiders the overall delay in the aircraft reactive motion including the pilot's reaction time. The paper presents a detailed logic and test methods.

Airspeed Estimation Through Integration of ADS-B, Wind, and Topology Data (ADS-B, 기상, 지형 데이터의 통합을 통한 대기속도 추정)

  • Kim, Hyo-Jung;Park, Bae-Seon;Ryoo, Chang-Kyung;Lee, Hak-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.67-74
    • /
    • 2022
  • To analyze the motion of aircraft through computing the dynamics equations, true airspeed is essential for obtaining aerodynamic loads. Although the airspeed is measured by on-board instruments such as pitot tubes, measurement data are difficult to obtain for commercial flights because they include sensitive data about the airline operations. One of the commonly available trajectory data, Automatic Dependent Surveillance-Broadcast data, provide aircraft's speed in the form of ground speed. The ground speed is a vector sum of the local wind velocity and the true airspeed. This paper present a method to estimate true airspeed by combining the trajectory, meteorological, and topology data available to the public. To integrate each data, we first matched the coordinate system and then unified the altitude reference to the mean sea level. We calculated the wind vector for all trajectory points by interpolating from the lower resolution grid of the meteorological data. Finally, we calculate the true airspeed from the ground speed and the wind vector. These processes were applied to several sample trajectories with corresponding meteorological data and the topology data, and the estimated true airspeeds are presented.

Design and Analysis of High-Speed Unmanned Aerial Vehicle Ground Directional Rectifying Control System

  • Yin, Qiaozhi;Nie, Hong;Wei, Xiaohui;Xu, Kui
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.623-640
    • /
    • 2017
  • The full nonlinear equations of an unmanned aerial vehicle ground taxiing mathematical dynamic model are built based on a type of unmanned aerial vehicle data in LMS Virtual.Lab Motion. The flexible landing gear model is considered to make the aircraft ground motion more accurate. The electric braking control system is established in MATLAB/Simulink and the experiment of it verifies that the electric braking model with the pressure sensor is fitted well with the actual braking mechanism and it ensures the braking response speediness. The direction rectification control law combining the differential brake and the rudder with 30% anti-skid brake is built to improve the directional stability. Two other rectifying control laws are demonstrated to compare with the designed control law to verify that the designed control is of high directional stability and high braking efficiency. The lateral displacement increases by 445.45% with poor rectification performance under the only rudder rectifying control relative to the designed control law. The braking distance rises by 36m and the braking frequency increases by 85.71% under the control law without anti-skid brake. Different landing conditions are simulated to verify the good robustness of the designed rectifying control.

Quality Evaluation of Wind Vectors from UHF Wind Profiler using Radiosonde Measurements (라디오존데 관측자료를 이용한 UHF 윈드프로파일러 바람관측자료의 품질평가)

  • Kim, Kwang-Ho;Kim, Min-Seong;Seo, Seong-Woon;Kim, Park-Sa;Kang, Dong-Hwan;Kwon, Byung Hyuk
    • Journal of Environmental Science International
    • /
    • v.24 no.1
    • /
    • pp.133-150
    • /
    • 2015
  • Wind profiler provides vertical profiles of three-dimensional wind vectors with high spatiotemporal resolution. The wind vectors is useful to analyze severe weather phenomena and to validate the various products from numerical weather prediction model. However, the wind measurements are not immune to ground clutter, bird, insect, and aircraft. Therefore, quality of wind vectors from wind profiler must be quantitatively evaluated prior to its application. In this study, wind vectors from UHF wind profiler at Ganwon Regional Meteorological Administration was quantitatively evaluated using 27 radiosonde measurements that were launched every two or three hours according to rainfall intensity during Intensive Observation Period (IOP) from June to July 2013. In comparison between two measurements, wind vectors from wind profiler was relatively underestimated. In addition, the accuracy and quality of wind vectors from wind profiler decrease with increasing beam height. The accuracy and quality of the wind vectors for rainy periods during IOP were higher than for the clear-air measurements. The moderate rainfall intensity lead to multi-peaks in Doppler spectrum. It results in overestimation of vertical air motion, whereas wind vectors from wind profilers shows good agreement with those from radiosonde measurements for light rainfall intensity.

A study on establishing the aerodynamic database though the external flow method of a rotating vehicle (회전 운동하는 비행체의 외부 유동장 해석을 통한 공력데이터베이스 구축 연구)

  • Kang, Tae-Woo;Ahn, Jong-Moo;Lee, Hee-Rang;Choi, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.41-47
    • /
    • 2017
  • With the introduction of new technologies, ground weapons have led to the development of artificial intelligence and the attention of major developed countries. In this study, CFD was performed through the BLU-103 model to obtain aerodynamic data for aircraft that are subjected to rotational motion. To simulate the steady-state of a rotating body, the body was fixed and the principle of rotating the body by rotating the surrounding air was used. In order to examine the aerodynamic feasibility of the rotating aircraft, the analysis was carried out at intervals of $30^{\circ}$ angle from $0^{\circ}$ to $90^{\circ}$ for the simple shape and the side slip angle. It was confirmed that the drag coefficient for the simple model satisfies the quantitative results of 1.0 ~ 1.2 through CD presented in "Drag Book". The aerodynamic data was constructed by applying the valid input verified through the simple type analysis conditions to the actual shape, and the tendency was analyzed. The analysis confirmed that CX, CZ and CY increase not only in the simple model but also in the rotation of the actual model. Especially, the influence of CZ was judged to have contributed to the flight.

X-band Pulsed Doppler Radar Development for Helicopter (헬기 탑재 X-밴드 펄스 도플러 레이다 시험 개발)

  • Kwag Young-Kil;Choi Min-Su;Bae Jae-Hoon;Jeon In-Pyung;Hwang Kwang-Yun;Yang Joo-Yoel;Kim Do-Heon;Kang Jung-Wan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.8 s.111
    • /
    • pp.773-787
    • /
    • 2006
  • An airborne radar is an essential aviation electronic system for the aircraft to perform various civil and/or military missions in all weather environments. This paper presents the design, development, and test results of the multi-mode X-band pulsed Doppler radar system test model for helicopter-borne flight test. This radar system consists of 4 LRUs(Line-Replacement Unit), which include antenna unit, transmitter and receiver unit, radar signal & data processing unit and display Unit. The developed core technologies include the planar array antenna, TWTA transmitter, coherent I/Q detector, digital pulse compression, MTI, DSP based Doppler FFT filter, adaptive CFAR, moving clutter compensation, platform motion stabilizer, and tracking capability. The design performance of the developed radar system is verified through various ground fixed and moving vehicle test as well as helicopter-borne field tests including MTD(Moving Target Detector) capability for the Doppler compensation due to the moving platform motion.