• Title/Summary/Keyword: Aircraft Assessment

Search Result 172, Processing Time 0.024 seconds

Safety Assessment of Aircraft Crash Accident Into Spent Nuclear Fuel Dry Storage Facility - A Review With Focus on Structural Evaluation (사용후핵연료 건식저장시설의 항공기 충돌 구조안전성평가 연구 현황)

  • Lee, Sanghoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.263-278
    • /
    • 2019
  • Since the 1970s, aircraft crash accidents have been considered as one of the severest external events that should be evaluated for license application of nuclear reactors. After the 9.11 terrorist attacks, many countries have performed safety assessment against intentional or targeted aircraft crashes into nuclear related facilities. In some countries, assessment against targeted aircraft crash was enforced by regulation and considered an important task for license approval. Safety assessment against aircraft crash is a technically difficult task and many countries manage R&D programs to improve its reliability. In this paper, regulations of many countries regarding safety assessment against aircraft crash are summarized, separating regulations for accident aircraft crash and those for targeted aircraft crash. Research performed in various countries on safety assessment of nuclear facility against aircraft crash are summarized, with a focus on spent nuclear fuel dry storage facilities.

A Study on the Application of Operational Experience in the Stage of Aircraft System Design and Safety Assessment (항공기 시스템 설계와 안전성평가에 운영경험 반영 사례 연구)

  • Koo, Min-Sung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.2
    • /
    • pp.34-39
    • /
    • 2014
  • Airworthiness authorities specify the technical standards of airworthiness that propose minimum requirement of the commercial transport category and apply the rules in the certification process to ensure the safety of the aircraft. The Federal Aviation Administration and other national airworthiness authorities define the fatal accident risk levels for the safety assessment of the aircraft system and establish standard procedures to apply both qualitative and quantitative analysis techniques. However, an accident or incident may occur by the combination of various factors, although the aircraft is designed in accordance with the strict standards and approval by the Airworthiness Authorities. There are some key factors, such as human error, unpredictable complex system failures, degradation of the components reliability, improper maintenance task and intervals. Risk can be reduced by reflecting aircraft operational experience with similar types of aircraft in the process of aircraft development and safety assessment. Result of the root cause analysis for the Airbus A300-600 incident in which the aircraft engine reverser was deployed in the air have been introduced to reflect the design of system and related components. Also, this paper suggests to create a big-database in order to provide a feed-back to the FAR Part 25 transport category design and safety assessment of the operational experience.

A Study on the System Safety Assessment of Aircraft (항공기 시스템의 안전성 평가에 관한 연구)

  • Lee, Kyung-Chol;Lee, Jong-Hee;Yi, Baeck-Jun;Yoo, Seung-Woo
    • Journal of Applied Reliability
    • /
    • v.7 no.2
    • /
    • pp.89-100
    • /
    • 2007
  • For the certification of aircraft and part, it must be show the compliance with applicable requirements through system safety assessment. The safety assessment process should be planned and managed to provide the necessary assurance that all relevant failure conditions have been identified and that all significant combinations of failures which could cause those failure conditions have been considered. Complex systems, especially aircraft, should take into account any additional complexities and interdependencies which arise due to integration. In all cases involving integrated systems, the safety assessment process is of fundamental importance in establishing appropriate safety objectives for the system and determining that the implementation satisfies these objectives. This study review the safety assessment for the certification process of the aircraft engine system and analyze turbo-fan engine by fault analysis method for compliance with airworthiness requirement of aircraft engine system.

  • PDF

System Safety Assessment for KC-100 Civil Aircraft (KC-100 민간항공기 체계안전성 평가)

  • Kang, Min Seong;Koh, Dae Woo;Choi, Nag Sun;Cheon, Young Seong
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • KC-100 is a 4 seats, single piston engine, civil aircraft whose type certificate is applied for KAS 23 (FAR 23) for the first time in Korea. Its system safety assessment and analysis have been conducted to meet the minimum safety requirement in KAS 23 and to verify the safety of equipment, system, and installation in accordance with the requirement of ${\S}$23.1309 and the guidelines in FAA AC 23.1309-1D and SAE ARP 4761. This safety assessment begins with the FHA (Functional Hazard Assessment) at aircraft and system level in preliminary design phase, and all of the safety assessment and analysis reports including the preliminary version of SSA (System Safety Assessment) have been prepared during detail design phase. The revised version of these safety reports will be approved by Airworthiness Authority through the ground and flight test phases. In this paper, the safety assessment requirement in ${\S}$23.1309, safety assessment guideline in AC 23.1309-1D, and safety assessment and analysis methods in ARP 4761 will be explained based on the application example for KC-100 development. The experience and knowledge of this system safety assessment for civil aircraft can be applied to commuter aircraft of FAR 23 class or large transport airplane of FAR 25 class.

  • PDF

Study on EIA of Aircraft Noise II : Noise Assessment Improvement Plan (항공기소음의 환경영향평가에 관한 연구 II : 소음평가 개선방안)

  • Sun, Hyo-Sung;Park, Young-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.193-195
    • /
    • 2006
  • In order to minimize the influence of aircraft noise in the vicinity of domestic airports, the establishment of proper land-use plan according to the influence scope of aircraft noise in the opening part of preparing a housing site around domestic airports is needed. For the purpose of doing it, the environmental impact assessment accompanied by the accurate prediction of aircraft noise distribution is preceded, and this paper describes the improvement plan for performing the trustworthy environmental impact assessment of aircraft noise in the neighborhood of domestic airports.

  • PDF

Operational Risk Assessment for Airworthiness Certification of Military Unmanned Aircraft Systems using the SORA Method

  • Namgung, Pyeong;Eom, Jeongho;Kwon, Taehwa;Jeon, Seungmok
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.64-74
    • /
    • 2021
  • Unmanned Aircraft Systems (UAS) are rapidly emerging not only as a key military power, such as surveillance and reconnaissance for military purposes but also as a new air transportation means in the form of Urban Air Mobility (UAM). Currently, airworthiness certification is carried out focused on the verification of technical standards for flight safety suitability of aircraft design in accordance with the Military Aircraft Flight Safety Certification Act and does not employ the model for operational risk assessment for mission areas and airspace. In this study, in order to evaluate the risk of the mission area from the perspective of the UAS operator, a risk assessment simulation has been conducted by applying the Specific Operations Risk Assessment (SORA) model to the operating environment of the Korean military UAS. Also, the validity of the SORA model has been verified through the analysis of simulation results, and a new application plan for airworthiness certification of the military unmanned aerial system has been presented.

Factor Analysis of the Aircraft Noise Impact Assessment in the Building Site Development District Around of Gimpo Airport (김포공항 주변 택지개발지구 항공기소음 영향평가에 미치는 요인분석)

  • Kim, Heung-Sik;Ju, Si-Woong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.718-723
    • /
    • 2005
  • The purpose of this study is to present a fundamental data for evaluating aircraft noise of building site development. By the field experiments and the predicted equal noise level contours using the INM program, actual condition in the building site development arranged district was investigated. In order to get the results, Analysis of factors effected on noise level, sound level on the rate of increase to aircraft demand and difference on the aircraft noise levels according to floor level in apartment house was carried out. As a result the influence of the take-off and landing direction were appeared greatly. The influences of the height at receiving point, movement number of aircraft and increase to aircraft demand were appeared small And the influence of 1 day average WECPNL must be considered.

Evaluation on the Noise Influence and Reduction due to the Change of Military Aircraft Flight Path (군용항공기의 운항 경로 변경에 따른 소음영향 및 저감 평가)

  • Lee, Jin-Young;Lee, Chan;Kil, Hyun-Gwon
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.3
    • /
    • pp.143-150
    • /
    • 2009
  • The present study investigates the effects of the flight paths of military aircraft on noise map and its WECPNL(Weighted Equivalent Continuous Perceived Noise Level) distribution. Aircraft noise modeling and simulation have been performed on a Korean military air base by means of INM(Integrated Noise Model) with the input data of airfield location, aircraft specifications, flight paths and aircraft's operation schedules. The result of noise modelling has been verified in comparison with the result of measured noise level. The flight path of military aircraft, as the key parameter of the present study, was modeled by combining takeoff, overfly, approach and touch-and-go modes. The present INM simulations have been conducted for various flight path cases with different takeoff, approach modes and overfly modes. The simulation results showed that the change of flight path can remarkably affect the noise influence region and the WECPNL distribution around the airfield.

A Study on the Safety Requirements Establishment through System Safety Processes (시스템 안전성평가를 통한 효율적 요건 도출방안 연구)

  • Yoo, Seung-woo;Jung, Jinpyong;Yi, Baeck-Jun
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.2
    • /
    • pp.29-34
    • /
    • 2013
  • Safety requirements for aircraft and system functions include minimum performance constraints for both availability and integrity of the function. These safety requirements should be determined by conducting a safety assessment. The depths and contents of aircraft system safety assessment vary depending on factors such as the complexity of the system, how critical the system is to flight safety, what volume of experience is available on the type of system and the novelty and complexity of the technologies being used. Requirements that are defined to prevent failure conditions or to provide safety related functions should be uniquely identified and traceable through the levels of development. This will ensure visibility of the safety requirements at the software and electronic hardware design level. This paper has prepared to study on promoting the efficiency of establishing hierarchical safety requirements from aircraft level function to item level through system safety processes.

A Study on Promoting the Efficiency of Aircraft System Safety Assessment (항공기 시스템 안전성평가 효율화 방안 연구)

  • Yoo, Seung-woo;Lee, Jong-hee
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.3
    • /
    • pp.7-12
    • /
    • 2012
  • The contents of aircraft system safety assessment vary depending on factors such as the complexity of the system, how critical the system is to flight safety, what volume of experience is available on the type of system and the novelty and complexity of the technologies being used. If the system safety assessment is to substantiate that the developed products are 'safe enough' to be taken into use, then the system safety assessment should be planned and managed to provide the necessary assurance that all relevant hazards and failure conditions have been identified and that all significant combinations of hazards and failures which could cause those conditions have been considered. The assessment must assist the designer and management in making decisions. It must make clear what the critical features of each system are and upon which special manufacturing techniques, inspection, testing, crew drills and maintenance practice they are critically dependent. This paper has prepared to study on promoting the efficiency of aircraft system safety assessment and to present how to compile system safety assessment strategy.