• Title/Summary/Keyword: Aircraft

Search Result 4,766, Processing Time 0.026 seconds

A Study on the Technological Competitiveness of Aircraft Infra Industries by using Patents (특허분석을 통한 항공기반산업의 기술경쟁력에 관한 연구)

  • Jung, Ha-Gyo;Whang, Kyu-Seung
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2007.11a
    • /
    • pp.43-57
    • /
    • 2007
  • This paper considers the technological competitiveness of aircraft infra industries that are bases of the aircraft industry development in Korea. We performed focus group interviews to aircraft industry specialists and classified the aircraft infra industries by eight fields: metallurgical assembly, general machinery, precision instruments, materials & parts, communication appliances, computer, semi-conductor/ electronic component, electronics. Through the United States patents analysis for the G7 countries and Korea during 1995-2006, we identified the technological specificities and competences of each country. RTA(Revealed Technology Advantage) index and CII(Current Impact Index) are used to examine the technological specificity and technological competence respectively. Finally, we introduced TCI(Technological Competitiveness Index) which could reflect quantitative level as well as qualitative level of patents for each aircraft infra industry. The results show that Korea has occupied the technological competitiveness in the semi-conductor and electronic component industry out of eight aircraft infra industries, and achieved a competitive edge in communication appliance industry in the mid 2000s.

  • PDF

Free-wing Tilt-body Aircraft Controllerability Analysis for Change of Center of Gravity (무게중심 변화에 따른 자유날개 동체꺾임형 항공기의 조종성 해석)

  • Park, Wook-Je
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.1-5
    • /
    • 2011
  • The free-wing tilt-body aircraft is researched in the flight performance characteristics for center of gravity (CG) change. All of speed, body tilt angle and center of gravity change are simulated to determine the flight envelope by a non-linear 3-DOF mathematical model. In flight, this aircraft configuration changes by the tiltable empennage. Then, flight dynamics distinguishes from those of a conventional fixed-wing aircraft. Though flight performance and trimmability are studied by CG change, the flight model of free-wing tilt-body aircraft is to reduce the hidden risk and to achieve the successful flight test. It is analyzed the flight characteristics by CG change that distinguishes free-wing tilt-body aircraft from the conventional aircraft.

An Empirical Study on the Required Number of Aircraft Parking Stands in Incheon International Airport (인천공항 주기장 요구량 산정을 위한 실증연구)

  • Jung, Jonghyun;Lee, Yoojin;Kim, Byung Jong;Kim, Wonkyu;Choi, Dongyup;Bae, Youngmin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.3
    • /
    • pp.32-39
    • /
    • 2018
  • Aircraft parking stand is a place separated by a pavement marking so that aircraft can park in the apron. If there is not an aircraft parking stand available for aircraft just arrived, the aircraft has to wait for a stand becomes empty on taxi lane taxiway, which annoys passengers, and deteriorates the congestion in the airport. Therefore, it is important to provide adequate parking stands in planning process. In this study, we studied the maximum number of aircraft parking stands required in the past, and estimated the future requirements, for Incheon International airport.

A Study on Flexible Culture in Aviation Maintenance Organization (항공정비조직의 유연성문화 연구)

  • Kim, Chun-Yong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The aircraft maintenance demands a lot of aviation mechanics in urgent according to the high season and low season in seasonal demand adjusted, unplanned maintenance work such as AD (airworthiness directives) and troubleshooting of aircraft system fault. The advent of Super-Large Aircraft such as A380 with aircraft materials, power plant and avionics systems which were not in previous models must be expected to increase the complexity of the aircraft maintenance system. This study is intended to propose the development plan for formation of positive flexibility culture in aircraft maintenance organization through the review of previous research on flexibility culture of organization and through empirical research for bureaucratic and poor factors by the evaluation of flexibility culture level of domestic aircraft maintenance organization.

Adaptable conceptual aircraft design model

  • Fioriti, Marco
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.1
    • /
    • pp.43-67
    • /
    • 2014
  • This paper presents a new conceptual design model ACAD (Adaptable Conceptual Aircraft Design), which differs from the other models due to its considerable adaptability to the different classes of aircraft. Another significant feature is the simplicity of the process which leads to the preliminary design outputs and also allowing a substantial autonomy in design choices. The model performs the aircraft design in terms of total weight, weight of aircraft subsystems, airplane and engine performances, and basic aircraft configuration layout. Optimization processes were implemented to calculate the wing aspect ratio and to perform the design requirements fulfillment. In order to evaluate the model outcomes, different test cases are presented: a STOL ultralight airplane, a new commuter with open-rotor engines and a last generation fighter.

CFD ANALYSIS ON AIRCRAFT STORE SEPARATION VALIDATION (무장분리 안전성을 위한 전산해석)

  • Jueng, H.S.;Yoon, Y.H.;Lee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.14-16
    • /
    • 2007
  • A critical problem in the integration of stores into new and existing aircraft is the safe separation of the stores from the aircraft at a variety of flight conditions representative of the aircraft flight regime. Typically, the certification of a particular store/aircraft/flight condition combination is accomplished by a flight test. Flight tests are very expensive and do expose the pilot and aircraft to a certain amount of risk. Wind tunnel testing, although less expensive than flight testing, is still expensive. Computational Fluid Dynamics(CFD) has held out the promise of alleviating expensive and risk by simulating weapons separation computationally. The forces and moments on a store at carriage and at various points in the flow field of te aircraft can be computed using CFD applied to the full aircraft and store geometry. This study needs full dynamic characteristics study and flow analysis for securing store separation safety. Present study performs dynamic simulation of store separation with flow analysis using Chimera grid scheme which is usually used for moving simulations.

  • PDF

The future role of smart structure systems in modern aircraft

  • Becker, J.;Luber, W.;Simpson, J.;Dittrich, K.
    • Smart Structures and Systems
    • /
    • v.1 no.2
    • /
    • pp.159-184
    • /
    • 2005
  • The paper intends to summarize some guidelines for future smart structure system application in military aircraft. This preview of system integration is based upon a review on approximately one and a half decades of application oriented aerospace related smart structures research. Achievements in the area of structural health monitoring, adaptive shape, adaptive load bearing devices and active vibration control have been reached, potentials have been identified, several feasibility studies have been performed and some smart technologies have been already implemented. However the realization of anticipated visions and previously initial timescales announced have been rather too optimistic. The current development shall be based on a more realistic basis including more emphasis on fundamental aircraft strength, stiffness, static and dynamic load and stability requirements of aircraft and interdisciplinary integration requirements and improvements of integrated actors, actuator systems and control systems including micro controllers.

An Investigation of the Effects of Flaperon Actuator Failure on Flight Maneuvers of a Supersonic Aircraft

  • Oh, Seyool;Cho, Inje;McLaughlin, Craig
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.2
    • /
    • pp.1-8
    • /
    • 2016
  • The improvements in high performance and agility of modern fighter aircraft have led to improvements in survivability as well. Related to these performance increases are rapid response and adequate deflection of the control surfaces. Most control surface failures result from the failure of the actuator. Therefore, the failure and behavior of the actuators are essential to both combat aircraft survivability and maneuverability. In this study, we investigate the effects of flaperon actuator failure on flight maneuvers of a supersonic aircraft. The flight maneuvers were analyzed using six degrees of freedom (6DOF) simulations. This research will contribute to improvements in the reconfiguration of control surfaces and control allocation in flight control algorithms. This paper compares the results of these 6DOF simulations with the horizontal tail actuator failures analyzed previously.

Design and Construction of a Quad Tilt-Rotor UAV using Servo Motor

  • Jin, Jae-Woo;Miwa, Masafumi;Shim, Joon-Hwan
    • Journal of Engineering Education Research
    • /
    • v.17 no.5
    • /
    • pp.17-22
    • /
    • 2014
  • Unmanned aerial vehicles (UAVs) that have been recently commercialized can largely be divided into fixed-wing aircraft and rotor aircraft by their styles and flight characteristics. Although the fixed-wing aircraft represents higher power efficiency, higher speed, longer flight distance and larger loading weight than the rotor aircraft, they have a disadvantage of requiring a space for take-off and landing. On the other hand, the rotor aircraft can implement vertical take-off and landing (VTOL) and represents various flight modes (hovering, steep bank turns and low-speed flights). But they require both precision take-off control and attitude control. In this study, we used a quad-tilt rotor UAV to combine advantages in both the fixed-wing aircraft and the rotor aircraft. The quad-tilt rotor (QTR) system was designed and constructed by adding a tilt device with a servo motor to a general quad-rotor vehicle.

An Analysis of WTO Disputes in Aircraft Manufacturing Industry (항공기 제조산업 관련 WTO 분쟁사례 분석)

  • Lee, Hae Jun;Kim, Sun Ihee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.4
    • /
    • pp.83-95
    • /
    • 2019
  • In order to promote the domestic aircraft manufacturing industry, this study analyzed the limitations of the preceding study on the WTO dispute concerning civil aircraft by summarizing the latest developments and issues in the mid-range aircraft dispute between Brazil and Canada and the large civil aircraft dispute between the United States and the EU. Based on the results of the study, we should look closely at WTO regulations and existing cases of disputes to find maximum support measures, and we believe that in order to stimulate the domestic aircraft manufacturing industry, we should refrain from publicly specifying support measures in the data, such as laws and policies, utilize the WTO SCM Agreement exceptions, and strengthen links with international cooperation and other industries.