본 연구에서는 항공 관측으로 얻어진 다중분광영상과 LIDAR (LIght Detection And Ranging) 자료를 이용하여 농업지역의 토지피복 분류 정도를 분석하였다. 다중분광영상은 녹색, 적색, 근적외역의 3분광으로 이루어져 있다. LIDAR 벡터 자료로부터 최초 반사강도 영상과 최초 반사 표고 자료와 최후 반사의 지상 표고 자료의 차이로 산출된 식생 높이 영상이 얻어졌다. 토지피복 분류 방법은 최대우도법을 사용했으며, 다중분광영상의 3밴드 영상 LIDAR의 반사강도 영상, 식생 높이 영상을 이용하였다. 모든 영상을 이용한 토지피복 분류의 전체 정도는 85.6%로 다중분광영상만을 이용한 정도보다 10%이상 향상되었다. 여러 농작물간의 높이의 차이, 수목과 농작물 높이의 차이와 LIDAR 반사강도 차이로 인하여 다중분광영상과 LIDAR 영상을 사용한 토지피복 분류의 정도가 향상되었다.
항공라이다시스템은 산림영역의 수직구조에 대한 공간정보를 효율적으로 제공하므로 다양한 산림연구에 이용되어왔다. 수목의 고도는 산림생체량과 같은 산림정보를 유추하기 위한 필수적인 요소로 산림의 지형을 모델링하여 추정할 수 있다. 산림지형은 산림영역에서 획득된 라이다데이터에서 추출된 지면점을 보간하여 추정되므로 지면점 분류를 위한 신뢰성 높은 필터링 방법이 요구된다. 이에 본 연구는 다양한 특성을 갖는 산림영역의 라이다데이터에 세 종류의 대표적인 필터링 방법들을 적용하여 지면점 분류오차 및 필터링 성능을 정량적으로 결정하고 오차발생 원인을 분석하였다. 분석한 결과로 나타난 상호보완적인 특성에 착안하여 개별 필터링의 결과를 융합하여 성능개선의 여부를 확인하였다. 융합을 통해 대상지역의 특성에 따라서 다르지만 성능지표가 최대 10% 이상 개선되어 모든 지역에서 안정적으로 양호한 성능을 보였다. 또한 분류된 지면점으로부터 DTM을 생성하고 검증 데이터와 비교한 결과 약 17 cm 내외의 RMS 오차를 보였으며, 이는 산림정보 추출에 충분히 활용 가능한 것으로 판단된다.
본 연구는 항공 라이다 자료를 이용하여 영역 기반 차폐율 지도를 제작하는데 목적이 있다. 영역 기반 차폐율을 산정하기 위하여 대표적인 영역 분할 기법인 유역 분할(Watershed) 기법을 라이다 자료의 고도값에 적용하였으며, 추출된 영역들을 기반으로 차폐율을 산정하였다. 포인트 기반의 라이다 분류 자료를 래스터 자료로 변환하는 과정에서 빈도수 방법을 사용함으로써 포인트 기반의 차폐율 산정법에서 발생하는 과소 과대 추정 문제를 해결하였다. 또한, 분할의 정도를 달리함으로써 필요에 따라 다양한 축척의 차폐율 지도를 작성할 수 있었다. 제안 기법을 통해 제작된 차폐율 지도는 기존 임상도에서 제공하는 소밀도에 비해 보다 정확하고 세밀한 정보를 제공함을 확인할 수 있었다.
최근 들어 항공 라이다 데이터를 도시모델링에 활용하려는 많은 연구들이 진행되고 있다. 도시모델을 구성하는 인공 구조물을 효율적으로 추출하기 위해서는 측정된 3차원 점의 집합으로부터 평면패치를 자동으로 추출하는 것이 중요하다. 평면 패치의 자동 추출에 대한 상당한 연구가 수행되었지만 아직도 추출의 정확도와 완전성 및 계산의 효율성 측면에서 만족할 만한 결과를 얻지 못하고 있다. 이에 본 연구는 항공 라이다 측량으로 취득된 3차원 점의 집합을 자동으로 분할하여 표면패치를 구성하는 효율적인 방법의 개발을 목표로 한다. 제안된 방법은 3차원 점간의 인접성을 수립하고, 소량의 인접점을 그룹핑하여 초기패치를 생성하고, 이를 성장시켜 표면패치를 생성하는 과정으로 구성된다. 제안된 방법은 패치를 성장시키는 과정에서 통계적 분석에 기반하여 가변적으로 설정되는 임계값을 이용하여 분할 결과의 질을 향상시키고, Priority Heap과 순차적최소제곱법에 기반한 효율적인 계산 방법을 사용하였다는 점이 특징적이다. 제안된 방법을 다양한 실측 라이다 데이터에 적용하여 성능을 검증하였다. 제안한 분할 방법을 통해 대용량 3차원 점으로 구성되는 라이다 데이터는 명시적이고 강인한 표현 형태인 표면 패치의 집합으로 변환될 수 있었다. 이러한 중간 변환 과정을 통해 빌딩 추출과 같은 객체 인식의 문제를 효과적으로 해결할 수 있다.
Coastline has been considered as fundamental geographic information of a nation. Recently, the coastlines of higher resolution and accuracy with less update period ever than before are increasingly required. This requirement cannot be easily satisfied with the most traditional methods based on field survey such as leveling or GPS measurements. The newly developed airborne LIDAR system can be used as a promising alternative since it rapidly acquire numerous three-dimensional points densely sampled from the terrain around the coastline. Hence, in this study we developed a nearly automatic method to extract the coastline from LIDAR data and applied it to real data to verify its performance. From the comparison of the extracted coastlines with those from a digital map, we conclude that the proposed method can provide more accurate and precise lines.
Building information plays a key role in diverse applications such as urban planning, telecommunication and environment monitoring. Automatic building extraction has been a prime interest in the field of GIS and photogrammetry. In this paper, we presented an automatic approach for building extraction from lidar data. The proposed approach is divided into four processes: pre-processing, filtering, segmentation and building extraction. Experimental results showed that the proposed method detected most of buildings with less commission and omission errors.
This paper proposed a practical method for building detection and extraction using airborne laser scanning data. The proposed method consists mainly of two processes: low and high level processes. The major distinction from the previous approaches is that we introduce a concept of pseudogrid (or binning) into raw laser scanning data to avoid the loss of information and accuracy due to interpolation as well as to define the adjacency of neighboring laser point data and to speed up the processing time. The approach begins with pseudo-grid generation, noise removal, segmentation, grouping for building detection, linearization and simplification of building boundary , and building extraction in 3D vector format. To achieve the efficient processing, each step changes the domain of input data such as point and pseudo-grid accordingly. The experimental results shows that the proposed method is promising.
LIDAH data often include systematic errors, which should be removed by a calibration process. This paper proposes a robust approach to calibrating LIDAR data using natural surfaces as reference data. The uniqueness of this approach is to employ a sophisticated selection scheme so that only a portion of LIDAR points can be used to estimate the bias parameters generating the systematic errors. This approach was applied to calibrating simulated LIDAR data. The results show that the approach can successfully recover the bias parameters and calibrate the data with acceptable RMS errors. Particularly, the parameter recovery model can be easily extended to register image data with LIDAR data.
본 논문은 항공라이다 데이터로부터 추출한 건물점으로부터 건물 경계를 재구성하는데 있어서 정확도와 연산 효율성을 향상시키는 것을 목적으로 한다. 이를 위하여 국지적 컨벡스헐 알고리즘을 3가지 측면에서 수정한 적응적 컨벡스헐 알고리즘을 제안하였다. 첫째, 연산 효율성을 향상시키기 위하여 점들의 밀도에 따라 경계 후보점을 먼저 추출한 후 경계점을 추출한다. 둘째, 폐색이나 오차가 포함된 건물에서 보다 안정적으로 건물 경계점을 추출하기 위하여 원시 데이터 구조를 바탕으로 탐색 반경을 적응적으로 변화시킨다. 셋째, 안마당과 오차에 의한 홀을 구분하기 위하여 점들 간의 거리와 ID를 이용한 내부 경계 초기점 탐지 기법을 적용한다. 제안 방법의 활용가능성을 평가하기 위하여 다양한 건물들을 포함하는 두 도시 지역에 적용한 결과, 모양상이성이 8.5%로써 기존의 대표적인 경계점 추출 방법에 비하여 우수하였으며 연산 효율성은 약 2배 향상된 것을 확인할 수 있었다.
항공라이다 데이터를 이용한 건물 추출 연구가 많이 진행되어 오고 있으나 대부분의 연구는 건물경계를 직선으로 가정하기 때문에 곡선경계가 포함된 건물의 경계를 올바르게 모델링하지 못하는 한계가 있다. 본 논문은 곡선경계를 포함하는 건물을 항공라이다 데이터로부터 직선과 곡선이 혼합된 경계로 모델링하는 것을 목적으로 한다. 건물점들에 대하여 적응적 컨벡스헐 알고리즘과 큰 반경의 국지적 컨벡스헐 알고리즘을 적용하여 두 세트의 경계점을 추출한다. 경계점들의 평균 점 간격 및 수직이등분선의 교차 비율에 의하여 곡선 세그먼트를 판별한 후, 직선과 곡선 세그먼트에 대하여 각각 다른 정규화 방법을 적용하여 건물경계를 모델링한다. 실험결과, 곡선 세그먼트의 추출 완전성과 정확성이 각각 69%, 100%로서 본 연구의 방법을 통해 대부분의 곡선경계를 올바르게 추출 및 모델링 할 수 있었다. 본 연구의 결과는 수치지도 제작기준을 만족하는 건물경계를 자동으로 생성하는데 효과적으로 활용될 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.