• 제목/요약/키워드: Airborne Infectious Disease

검색결과 19건 처리시간 0.028초

국내외 공기감염 분야 연구동향 (Review of Recent Studies on the Airborne Infection)

  • 권순박;김창수
    • 한국입자에어로졸학회지
    • /
    • 제6권2호
    • /
    • pp.81-90
    • /
    • 2010
  • Several studies have suggested the possibility of airborne transmission of infectious diseases such as tuberculosis, pandemic influenza. because the number of patients increases explosively, if infectious disease had a high basic reproduction number, pharmaceutical interventions such as vaccination, chemoprophylaxis in the early stage of epidemic. Thus, non-pharmaceutical interventions such as mask-wearing, installing air cleaners, school closure are important to control and prevent the infectious diseases. However, the current technology on the mask, air cleaning, ventilation, and etc., seems to be not originated from the understanding of infection via airborne transmission. It is important to estimate the aerodynamic behavior of saliva droplets by coughing or speaking in order to understand the phenomena of airborne infection. In addition, the prediction of transmission of infectious diseases through the air is critical to prevent or minimize the damage of infection. In this review, we reviewed the recent studies on the airborne infection by focusing on the aerodynamic characteristics of saliva droplets and modeling of airborne transmission.

실내 공간에서의 호흡기 감염병 공기전파감염 위험도와 공기정화장치(필터 임배디드 기계식 환기설비 및 공기청정기 등 실내 감염원 저감 장치) 사용에 따른 효율 (Airborne infection risk of respiratory infectious diseases and effectiveness of using filter-embeded mechanical ventilator and infectious source reduction device such as air cleaner)

  • 박성재;박근영;박대훈;구현본;황정호
    • 한국입자에어로졸학회지
    • /
    • 제16권4호
    • /
    • pp.73-94
    • /
    • 2020
  • Particulate infectious sources, including infectious viruses, can float in the air, causing airborne infections. To prevent indoor airborne infection, dilution control by ventilation and indoor air cleaners are frequently used. In this study, the risk of airborne infection by the operation of these two techniques was evaluated. In case of dilution control by ventilation, a high efficiency air filter was embedded at the inlet of supply air. In this study, infectious source reduction devices such as indoor air cleaner include all kinds of mechanical-filters, UV-photo catalysts and air ionizers through which air flow is forced by fans. Two mathematical models for influenza virus were applied in an infant care room where infants and young children are active, and the risk reduction efficiency was compared. As a result, in the case of individually operating the ventilator or the infectious source reduction device, the airborne infection risk reduction efficiencies were 55.2~61.2% and 53.8~59.9%, respectively. When both facilities were operated, it was found that the risk of airborne infection was reduced about 72.2~76.8%. Therefore, simultaneous operation of ventilation equipment and infectious source reduction device is the most effective method for safe environment that minimizes the risk of airborne infection of respiratory infectious diseases. In the case of a space where sufficient ventilation operation is difficult, it was found that the operation of an infectious source reduction device is important to prevent the spread of infectious diseases. This study is meaningful in that it provides an academic basis for strategies for preventing airborne infection of respiratory infectious diseases.

중증 호흡기 감염병 진료를 고려한 음압격리병동부의 건축계획 (A Development of Design Guidelines for the Negative Pressured Isolation Units Controlling Severe Respiratory Infectious Disease)

  • 권순정;윤형진
    • 의료ㆍ복지 건축 : 한국의료복지건축학회 논문집
    • /
    • 제22권3호
    • /
    • pp.45-56
    • /
    • 2016
  • Purpose: The MERS(Middle East Respiratory Syndrome) outbreaks in Korea highlighted dramatically the failings of traditional hospital environment for controlling or preventing infections among both patients and healthcare workers. MERS is transmitted by droplets that can be airborne over a limited area. The point should be emphasized that MERS in South Korea was predominantly a hospital-acquired (not a community-acquired) infection, because approximately 93% of MERS cases were resulted from exposure in hospital settings. This paper tries to suggest the design guidelines of negative pressured isolation ward for the sake of proper control of severe respiratory infectious diseases. Methods: Literature survey on the design guideline and regulations of airborne infection wards in Korea, Europe U.K. and CDC of U.S. have been carries out. 4 special infection wards in Hongkong, Germany, Japan and Korea have been surveyed in order to make the best use of the experiences related to facility design and operations. Results: Operating system influencing the facility design, space organizations of infectious ward including required space and zoning, and circulations of patients, staffs and materials are proposed. Implications: The results of this paper can be the basic data for the design of the airborne infection ward and relevant regulations. Afterwards in-depth study such as the development of space standards for the single bedroom, locker room and so on could be explored.

수치해석을 이용한 임시대피소 내 공기감염확산 저감장치의 성능 분석 (Numerical Analysis of Airborne Infection Control Performance of Germicidal Systems in a Temporary Shelter)

  • 박정연;성민기;이재욱
    • 의료ㆍ복지 건축 : 한국의료복지건축학회 논문집
    • /
    • 제21권1호
    • /
    • pp.7-15
    • /
    • 2015
  • Purpose : When natural disaster occurs, the victims are evacuated to temporary shelters such as indoor gymnasiums or large space buildings until their homes are recovered. If someone in this temporary shelter is infected with an airborne infectious disease, it becomes easier for the disease to spread to the other people in the shelter than it would be under normal conditions. Therefore, temporary shelters need to provide not only water and food but also hygienic indoor conditions. Methods : In this study, the use of mechanical systems such as ultraviolet germicidal irradiation (UVGI) systems and air cleaners were simulated using numerical analysis to find out how these systems can control airborne infection in temporary shelters. An indoor gymnasium was selected as a temporary shelter for the numerical simulation model considering Korea's post-disaster response system. Influenza A virus was assumed as an airborne infectious disease and the diffusion of the virus was made by one person in the shelter. Results : The result of this study showed that the UVGI systems disinfected the virus more effectively than the air cleaners by creating a more stable airflow after the disinfection process. The air cleaners could remove the virus but since it created an unstable airflow in the temporary shelter, the virus was condensed to a certain area to show a higher virus concentration level than the source location. Implications : In the temporary shelter, it is necessary to use UVGI systems or air cleaners for hygienic indoor conditions.

음압격리병실에 있어서 단계별 공간구성의 격리효과 (Isolation Effectiveness by Progressive Space Organization in Negative Pressured Isolation Unit)

  • 권순정;성민기
    • 의료ㆍ복지 건축 : 한국의료복지건축학회 논문집
    • /
    • 제22권4호
    • /
    • pp.79-86
    • /
    • 2016
  • Purpose: The purpose of this study is to identify the effect of Progressive Space Organization (ante-rooms) in Negative Pressured Isolation Unit(NPIU) such as National and Regional Isolation Units in Korea in order to build basic data for the evidence based design of Airborne Infection Isolation Units which should prepare and respond effectively to the public health crisis due to the hazardous airborne infectious disease. Methods: 1) Gas(SF6) test and analysis on the 23 Korean Isolation Units under operation. 2) Assessment of the isolation level of the space components by checking the Gas concentration. 3) Analysis of the Isolation Effectiveness according to Space Organizational levels. Results: 1) The higher segregation level is, the lower Gas(SF6) concentration is. 2) Too many segregations(anterooms) of Isolation Unit are not efficient for the prevention of infectious bacillus spread. For example, 4 level of segregation has similar segregation effect to the 3 level of segregation. Implications: Many anterooms in front of the isolated patient bedroom will guarantee the safe environment against the danger of hazardous airborne nosocomial infection. On the other hand, too many segregations is inefficient, expensive, inconvenient, narrow(unflexible) and so on. This study can be used as basic data for further development of design guidelines of isolation units.

감염병전문병원의 병동부 및 중환자부 영역 구성에 관한 연구 (A Study on the Zoning of Wards and Intensive Care Units (ICUs) in the Infectious Disease Hospital)

  • 이주랑;채철균
    • 의료ㆍ복지 건축 : 한국의료복지건축학회 논문집
    • /
    • 제29권3호
    • /
    • pp.17-28
    • /
    • 2023
  • Purpose: This study aims to provide basic data for the future construction plans of the Infectious Disease Hospitals by analyzing the area composition and required room ratios in the wards and ICU of currently under-construction infectious disease hospitals. Methods: 3 Methods have been used in this paper. 1) This study conducted a literature review on major considerations and related guidelines for hospitals specializing in infectious diseases using existing data. 2) Based on the objects and activities of the hospital space, zones and areas were set for each department according to infection control. 3) Based on the established zones and areas, basic plan drawings of three hospitals specializing in infectious diseases currently under construction were collected and architectural drawing analysis was performed. Results: 1) Infectious Diseases Hospital must have a spatial organization that can accommodate patient isolation, infection control, efficiency of medical service, and changes. 2) Zones for infection control are divided into negative pressure and non-negative pressure zones based on airborne precaution isolation. It is divided into clean and contaminated zone according to class of cleanliness by Aseptic technique. Areas are classified by objects (patients, healthcare workers, supplies) and activities (access, medical treatment, support), and a system for organizing space is established based on this. 3) By analyzing the area composition of each departmental area, each required room, and each required space in the wards and intensive care units, it provides basic data for the spatial organization for architectural planning of the infectious disease hospital. Implication: It can be used as basic data when planning related facilities by analyzing the characteristics of the space plan of the required room according to the relationship between activities, movement lines, and operation plans based on user behavior.

Transmission Characteristics of SARS-CoV-2 That Hinder Effective Control

  • Seongman Bae;Joon Seo Lim;Ji Yeun Kim;Jiwon Jung;Sung-Han Kim
    • IMMUNE NETWORK
    • /
    • 제21권1호
    • /
    • pp.9.1-9.8
    • /
    • 2021
  • The most important characteristics of coronavirus disease 2019 (COVID-19) transmission that makes it difficult to control are 1) asymptomatic and presymptomatic transmission, 2) low incidence or lack of dominant systemic symptoms such as fever, 3) airborne transmission that may need a high infectious dose, and 4) super-spread events (SSEs). Patients with COVID-19 have high viral loads at symptom onset or even a few days prior to symptom onset, and most patients with COVID-19 have only mild respiratory symptoms or merely pauci-/null-symptoms. These characteristics of the virus enable it to easily spread to the community because most patients are unaware of their potential infectivity, and symptom-based control measures cannot prevent this type of transmission. Furthermore, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is also capable of airborne transmission in conditions such as aerosol-generating procedures, under-ventilated indoor spaces, and over-crowded areas. In this context, universal mask-wearing is important to prevent both outward and inward transmission until an adequate degree of herd immunity is achieved through vaccination. Lastly, the SSEs of SARS-CoV-2 transmission emphasize the importance of reducing contacts by limiting social gatherings. The above-mentioned transmission characteristics of SARS-CoV-2 have culminated in the failure of long-lasting quarantine measures, and indicate that only highly effective vaccines can keep the communities safe from this deadly, multifaceted virus.

Correlation of Air Pollutants and Thermal Environment Factors in a Confined Pig House in Winter

  • Choi, Hong L.;Kim, Ki Y.;Kim, Hyunook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권4호
    • /
    • pp.574-579
    • /
    • 2005
  • Optimal management of indoor air quality in a confined pig house, especially in winter, is indispensable for preventing infectious respiratory disease to workers and animals. This study was performed to elucidate the correlation of aerial contaminants and climate factors in a confinement. It was observed that indoor air contaminants ion in the confinement was the highest at 2:00-5:00 pm in a day, followed by 8:00-11:00 pm and 8:00-11:00 am. This was attributed to the increase of pig activities in the afternoon. The concentration of total dust and total airborne bacteria was found to have a significant correlation with temperature and relative humidity (p<0.05). Correlation of total dust and total airborne bacteria, total dust and ammonia, and total dust and odor were shown statistically significant at 95% confidence level. In conclusion, temperature and total dust concentration correlated significantly with all the parameters except for hydrogen sulfide ($H_2S$). This could be explained by the fact the dryness of pig feces by increase of interior temperature and resuspension of feed deposited on the floor by the pig activity, resulted in high generation of dust which adsorbed and carried the airborne bacteria and odor compounds in a confined pig house. It was proved that the adsorptive capacity of dust with ammonia ($NH_3$) was higher than that with hydrogen sulfide ($H_2S$).

A Study on Concentration, Identification, and Reduction of Airborne Microorganisms in the Military Working Dog Clinic

  • Kim, Min-Ho;Baek, Ki-Ook;Park, Gyeong-Gook;Jang, Je-Youn;Lee, Jin-Hong
    • Safety and Health at Work
    • /
    • 제11권4호
    • /
    • pp.517-525
    • /
    • 2020
  • Background: The study was planned to show the status of indoor microorganisms and the status of the reduction device in the military dog clinic. Methods: Airborne microbes were analyzed according to the number of daily patient canines. For identification of bacteria, sampled bacteria was identified using VITEK®2 and molecular method. The status of indoor microorganisms according to the operation of the ventilation system was analyzed. Results: Airborne bacteria and fungi concentrations were 1000.6 ± 800.7 CFU/m3 and 324.7 ± 245.8 CFU/m3. In the analysis using automated identification system, based on fluorescence biochemical test, VITEK®2, mainly human pathogenic bacteria were identified. The three most frequently isolated genera were Kocuria (26.6%), Staphylococcus (24.48%), and Granulicatella (12.7%). The results analyzed by molecular method were detected in the order of Kocuria (22.6%), followed by Macrococcus (18.1%), Glutamicibacter (11.1%), and so on. When the ventilation system was operated appropriately, the airborne bacteria and fungi level were significantly decreased. Conclusion: Airborne bacteria in the clinic tend to increase with the number of canines. Human pathogenic bacteria were mainly detected in VITEK®2, and relatively various bacteria were detected in molecular analysis. A decrease in the level of bacteria and fungi was observed with proper operation of the ventilation system.

코로나 바이러스 대유행에 따른 치과 의료 관리 가이드라인 (Guidelines for dental clinic infection prevention during COVID-19 pandemic)

  • 김진
    • 대한치과의료관리학회지
    • /
    • 제8권1호
    • /
    • pp.1-7
    • /
    • 2020
  • Dental settings have unique characteristics that warrant specific infection control considerations, including (1) prioritizing the most critical dental services and provide care in a way that minimizes harm to patients due to delayed care, or harm to personnel from potential exposure to persons infected with the COVID-19 disease, and (2) proactively communicate to both personnel and patients the need for them to stay at home if sick. For health care, an interim infection prevention and control recommendation (COVID-19) is recommended for patients suspected of having coronavirus or those whose status has been confirmed. SARS-CoV-2, which is the virus that causes COVID-19, is thought to be spread primarily between people who are in close contact with one another (within 6 feet) through respiratory droplets that are produced when an infected person coughs, sneezes, or talks. Airborne transmission from person-to-person over long distances is unlikely. However, COVID-19 is a new disease, and there remain uncertainties about its mode of spreads and the severity of illness it causes. The virus has been shown to persist in aerosols for several hours, and on some surfaces for days under laboratory conditions. COVID-19 may also be spread by people who are asymptomatic. The practice of dentistry involves the use of rotary dental and surgical instruments, such as handpieces or ultrasonic scalers, and air-water syringes. These instruments create a visible spray that can contain particle droplets of water, saliva, blood, microorganisms, and other debris. While KF 94 masks protect the mucous membranes of the mouth and nose from droplet spatter, they do not provide complete protection against the inhalation of airborne infectious agents. If the patient is afebrile (temperature <100.4°F)* and otherwise without symptoms consistent with COVID-19, then dental care may be provided using appropriate engineering and administrative controls, work practices, and infection control considerations. It is necessary to provide supplies for respiratory hygiene and cough etiquette, including alcohol-based hand rub (ABHR) with 60%~95% alcohol, tissues, and no-touch receptacles for disposal, at healthcare facility entrances, waiting rooms, and patient check-ins. There is also the need to install physical barriers (e.g., glass or plastic windows) in reception areas to limit close contact between triage personnel and potentially infectious patients. Ideally, dental treatment should be provided in individual rooms whenever possible, with a spacing of at least 6 feet between the patient chairs. Further, the use of easy-to-clean floor-to-ceiling barriers will enhance the effectiveness of portable HEPA air filtration systems. Before and after all patient contact, contact with potentially infectious material, and before putting on and after removing personal protective equipment, including gloves, hand hygiene after removal is particularly important to remove any pathogens that may have been transferred to the bare hands during the removal process. ABHR with 60~95% alcohol is to be used, or hands should be washed with soap and water for at least 20 s.