• Title/Summary/Keyword: Air-water

Search Result 6,834, Processing Time 0.03 seconds

An Experimental Study on the Performance of Air/Water Direct Contact Air Conditioning System

  • Yoo, Seong-Yeon;Kwon, Hwa-Kil
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.1002-1009
    • /
    • 2004
  • Direct contact air conditioning systems, in which heat and mass are transferred directly between air and water droplets, have many advantages over conventional indirect contact systems. The purpose of this research is to investigate the cooling and heating performances of direct contact air conditioning system for various inlet parameters such as air velocity, air temperature, water flow rate and water temperature. The experimental apparatus comprises a wind tunnel, water spray system, scrubber, demister, heater, refrigerator, flow and temperature controller, and data acquisition system. The inlet and outlet conditions of air and water are measured when the air contacts directly with water droplets as a counter flow in the spray section of the wind tunnel, and the heat and mass transfer rates between air and water are calculated. The droplet size of the water sprays is also measured using a Malvern Particle Analyzer. In the cooling conditions, the outlet air temperature and humidity ratio decrease as the water flow rate increases and as the water temperature, air velocity and temperature decrease. On the contrary, the outlet air temperature and humidity ratio increase in the heating conditions as the water flow rate and temperature increase and as the air velocity decreases.

A Study on the Relationship between the Water Resistance and Air permeability of the Water Resistance Finished Fabrics (시판 방수가공직물의 방수성과 공기투과성과의 상관성에 관한 연구)

  • 김은화
    • Journal of the Korean Home Economics Association
    • /
    • v.20 no.3
    • /
    • pp.19-24
    • /
    • 1982
  • This study was carried out to investigate the relationship between the water resistance and the air permeability. The results are as follows; 1. In case of the water proofing fabrics, We cannot find that there is any relationship between the water resistance and the air permeability according to the kinds of finishing, while in case of the water repellent finished fabries, we can find that there is a correlationship between them, especially the hydrostatic pressure and the air permeability are found to have negative correlation. 2. In case of the water proofing fabrics, the relationship between the water resistance and the air permeability is not affected by the thickness of the fabrics. On the other hand, in case of the water repellent finished fabrics, the relationship between them is affected by the thickness of the fabrics. Especially, the relationship between the hydrostatic pressure and the air permeability as well as the relationship between the water repellency and the air permeability is effect much by the thickness of the fabrics, too. 3. In case of the water proofing fabrics, the relationship between the water resistance and the air permeability is not affected by fabric count. On the otherhand, in case of the water repellent finished fabrics, the relationship between them is affected by the fabric count. Especially, the relationship between hydrostatic pressure and the air permeability, and the relationship between the water proof and the air permeability are affected much by fabric count.

  • PDF

Performance Estimation of Hybrid Solar Air-Water Heater on Single Working of Heating Medium (복합형 태양열 가열기에서 열매체 단일운전에 따른 기기성능 평가)

  • Choi, Hwi-Ung;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.49-56
    • /
    • 2014
  • Research about hybrid solar air-water heater that can make heated air and hot water was conducted as a part of improving efficiency of solar thermal energy. At this experiment, ability of making heating air and hot water was investigated and compared with traditional solar air heater and flat plate solar collector for hot water when air or liquid was heated respectively. Comparing hybrid solar air-water heater that used in this experiment to other solar air heater studied already, it has a lower efficiency at same mass flow rate. Air channel structure, fin's shape and arrangement in the air channel result in these difference then the ability of air heating need to be improved with changing these thing. In case of making hot water, performance was shown as similar with traditional system although the air channels were established beneath absorbing plate. But the heat loss coefficient was shown higher value by installing of air channel. Also the performance of hot water making was shown lower value at same liquid mass flow rate with traditional flat plate solar collector for hot water. So the necessity of performance improvement at lower mass flow rate of each heating medium can be confirmed.

A Study on Thermal Storage Performance and Characteristics of Daily Operation of a Hybrid Solar Air-Water Heater (복합형 태양열 가열기의 일일 운전 특성 및 축열 성능에 관한 연구)

  • Choi, Hwi-Ung;Rokhman, Fatkhur;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.73-79
    • /
    • 2015
  • In this study, a thermal storage performance and characteristics of daily operation were investigated when the air and the liquid were heated simultaneously by a hybrid solar air-water heater that can make hot water as well as heated air. The hybrid solar air-water heater is kind of a flat plate solar collector that can make hot water and heated air by installing air channel beneath absorber plate of traditional flat plate solar collector for hot water. As a result of daily operation, maximum water temperature reached in a thermal storage was shown $44^{\circ}C$ on 73kg/h of air mass flow rate and about $40^{\circ}C$ on 176kg/h of air mass flow rate. Thus, the necessity of heating water in thermal storage by operating only liquid side was confirmed when the temperature of liquid in thermal storage is lower than we need. In case of efficiency investigated on daily operation, the thermal efficiency of the liquid side was decreased with increment of the inlet liquid temperature and decrement of the solar radiation, but efficiency of the air side was increased with increment of inlet liquid temperature difference as the traditional solar air heater. Total thermal efficiency of the collector was shown from 65.85% to 78.23% and it was decreased with increment of the inlet liquid temperature and decrement of solar radiation same as the traditional system.

Performance Analysis of Water/Air Direct Contact Air Conditioning System (물-공기 직접접촉식 공기조화장치의 성능해석)

  • 유성연;권화길;김광영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.175-183
    • /
    • 2004
  • Performance of the water/air direct contact air conditioning system, in which heat and mass are directly transferred between air and water droplet, is simulated using semi-empirical method. Direct contact system improves transport efficiency compared to conventional indirect contact system. In this study, correlations for h$_{c}$A / c$_{pm}$ which represent the capacity of direct contact system are derived as a function of air and water flowrate from the experimental data. Cooling and heating performance of the water/air direct contact air conditioning system are evaluated using these correlations.ons.

Performance Analysis of Hybrid Heat Pump System of the Air-to-Air/Air-to-Water with the Ambient Temperature (외기온 변화에 따른 공기-공기/공기-물 형태로 된 복합형 열펌프 시스템의 성능 특성 분석)

  • 송현갑
    • Journal of Biosystems Engineering
    • /
    • v.25 no.4
    • /
    • pp.273-278
    • /
    • 2000
  • The hybrid heat pump system of the air to air and / or air to water was composed and its COP was analyzed with the ambient temperature on the opened and closed loop system respectively. The results be indicated by the equation(7) that the COP(Coefficient of Performance) of air-source(air to air and / or air-water) heat pump is effected with the ambient air temperature and AVACTHE.(Automatic Variable Area Capillary Type Heat Exchanger) 2. The COP of air-to-water heat pump without AVACTHE decreased in accordance with the ambient temperature decrease, however in case of the heat pump with AVACTHE the COP was maintained at 2.8∼3.0 level when the ambient temperature decrease from -$5^{\circ}C$ to $-11^{\circ}C$. 3. The COP of the air-to-water heat pump operated on the open loop was higher 40∼58% than that of the heat pump operated on the close loop. 4. The lower ambient temperature air effect on the COP of the air-to-air heat pump operated on the semi closed loop could be controlled using the AVACTHE, and at the high ambient air temperature the COP increased using the Bypass circuit.

  • PDF

Analysis for Air Temperature Trend and Elasticity of Air-water Temperature according to Climate Changes in Nakdong River Basin (기후변화에 따른 낙동강 유역의 기온 경향성 및 수온과의 탄성도 분석)

  • Shon, Tae Seok;Lim, Yong Gyun;Baek, Meung Ki;Shin, Hyun Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.822-833
    • /
    • 2010
  • Temperature increase due to climate changes causes change of water temperature in rivers which results in change of water quality etc. and the change of river ecosystem has a great impact on human life. Analyzing the impact of current climate changes on air and water temperature is an important thing in adapting to the climate changes. This study examined the effect of climate changes through analyzing air temperature trend for Nakdong river basin and analyzed the elasticity of air-water temperature to understand the effect of climate changes on water temperature. For analysis air temperature trend, collecting air temperature data from the National Weather Service on main points in Nakdong river basin, and resampling them at the units of year, season and month, used as data for air temperature trend analysis. Analyzing for elasticity of air-water temperature, the data were collected by the Water Environment Information system for water temperature, while air temperature data were collected at the National Weather Service point nearest in the water temperature point. And using the results of trend analysis and elasticity analysis, the effect of climate changes on water temperature was examined estimating future water temperature in 20 years and 50 years after. It is judged that analysis on mutual impact between factors such as heat budget, precipitation and evapotranspiration on river water temperature affected by climate changes and river water temperature is necessary.

Cooling and Heating Operation Characteristics of Raw-water Source Heat Pump and Air Source Heat Pump in Water Treatment Facility (정수장 내 원수열원 및 공기열원 히트펌프의 냉난방 운전 특성)

  • Oh, Sun-Hee;Yun, Rin;Cho, Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.7
    • /
    • pp.386-391
    • /
    • 2013
  • The dynamic characteristics of both raw-water source and air source heat pump utilized in water treatment facilities were investigated by using TRNSYS simulator. The modeling of the raw water source heat pump was verified by the measured data at the Cheongju water treatment facility, and the modeling at the air source heat pump was verified by the data from the Siheung water treatment facility. The average heating and cooling COPs from the raw-water source heat pump were higher than those of the air source heat pump by 19% and 18%, respectively. The power consumptions of the air source heat pump for the cooling and the heating were higher than those of the raw water source heat pump by 28% and 26%, respectively.

An Experimental Study on the Effect of Water Hammer Arresters and Air Chambers in a Simple Water Piping System (단순 급수관로계내의 에어챔버 및 어레스터의 수격방지효과에 관한 실험적 연구)

  • 한화택;김종만
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.37-44
    • /
    • 1996
  • Water hammer pressure waves were measured in a simplified water piping system with and without arresters and air chambers by the operations of the solenoid valve. Experiments were performed to investigate the effects of the location of the arresters and the effects of the volume of the air chambers on maximum and minimum water hammer pressures and wave frequency for various flow rates.

  • PDF

EXACT RIEMANN SOLVER FOR THE AIR-WATER TWO-PHASE SHOCK TUBE PROBLEMS (공기-물 이상매질 충격파관 문제에 대한 정확한 Riemann 해법)

  • Yeom, G.S.;Chang, K.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.365-367
    • /
    • 2010
  • In this paper, we presented the exact Riemann solver for the air-water two-phase shock tube problems where the strength of the propagated sock wave is moderately weak. The shock tube has a diaphragm in the middle which separates water medium in the left and air medium in the right. By rupturing the diaphragm, various waves such as rarefaction wave, shock wave and contact discontinuity are propagated into water and air. Both fluids are treated as compressible, with the linearized equations of state. We used the isentropic relations for the air and water assuming a weak shock wave. We solved the shock tube problem considering a high pressure in the water and a low pressure in the air. The numerical results cleary showed a left-traveling rarefaction wave in the water, a right-traveling shock wave in the air, and the right-traveling material interface.

  • PDF