• Title/Summary/Keyword: Air-to-air Combat

Search Result 136, Processing Time 0.024 seconds

A study on comparison and implications of port greenhouse gas emission regulations in Korea and the United States with MARPOL (한국과 미국의 항만 온실가스 규제와 MARPOL에 대한 검토 및 시사점)

  • Cheolsoo kim
    • Journal of Korea Port Economic Association
    • /
    • v.40 no.2
    • /
    • pp.107-118
    • /
    • 2024
  • There is broad agreement that emissions from the shipping sector play a large role in the global climate change debate. In theory, there is broad consensus that the industry must take decisive action to reduce greenhouse gas emissions and do its part to combat global warming. The United States has made great strides in addressing emissions from ships, but it is the IMO that plays a key role in shaping global standards for the shipping industry. In the case of Korea, legislation on emissions issues has been prepared, but there are still problems with administrative power. IMO's high-level vision and change, as seen above, requires intensive efforts from industry representatives and requires intensive measures from the government responsible for implementation. It is necessary to consider regulations and the position of the shipping market. However, out of consideration and respect for the urgent reality of global climate change, ship owners, operators and holding companies will need to take voluntary steps to reduce GHG emissions instead of waiting for a new regulatory framework.

Effects of IR Reduction Design on RCS of UCAV (IR 저감 설계가 무인전투기의 RCS에 미치는 영향)

  • Song, Dong-Geon;Yang, Byeong-Ju;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.297-305
    • /
    • 2018
  • The role of UCAV is to carry out various missions in hostile situations such as penetration and attack on the enemy territory. To this end, application of RF stealth technology is indispensable so as not to be caught by enemy radar. The X-47B UCAV with blended wing body configuration is a representative aircraft in which modern RCS reduction schemes are heavily applied. In this study, a model UCAV was first designed based on the X-47B platform and then an extensive RCS analysis was conducted to the model UCAV in the high-frequency regime using the Ray Launching Geometrical Optics (RL-GO) method. In particular, the effects of configuration of UCAV considering IR reduction on RCS were investigated. Finally, the effects of RAM optimized for the air intake of the model UCAV were analyzed.

Computation of Flowfield and Infrared Signature in Aircraft Exhaust System for IR Reduction Design (항공기 후방동체 열유동장 및 IR 신호 예측 시스템)

  • Moon, Hyuk;Yang, Young-Rok;Chun, Soo-Hwan;Choi, Seong-Man;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.652-659
    • /
    • 2011
  • A computational system to predict flowfield and infrared signature in aircraft exhaust system is developed. As the first step, a virtual mission profile is considered and an engine is selected through a performance analysis. Then a nozzle that meets the requirement of each mission is designed. The internal flow in the exhaustion nozzle at the maximum thrust is analyzed using a state-of-the-art CFD code. In addition, a system to combine information of the skin temperature distribution of the nozzle and after-body surface with an infrared prediction code is developed. Finally, qualitative results for the infrared signature reduction design are obtained by investigating the infrared signature level under various conditions.

Drone Force Deployment Optimization Algorithm For Efficient Military Drone Operations (효율적 군용 드론 작전 운영을 위한 Drone Force Deployment Optimization 알고리즘)

  • Song, Ju-Young;Jang, Hyeon-Deok;Chung, Jong-Moon
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.211-219
    • /
    • 2020
  • One of the major advancements of the Fourth Industrial Revolution is the use of Internet of Drones (IoD), which combines the Internet of Things (IoT) and drone technology. IoD technology is especially important for efficiently and economically operating C4ISR operations in actual battlefields supporting various combat situations. The purpose of this study is to solve the problems of limited battery capacity of drones and lack of budgeting criteria for military drone transcription, introduction, and operation. If the mission area is defined and corresponding multi-drone hovering check points and mission completion time limits are set, then an energy and time co-optimized scheduling and operation control scheme is needed. Because such a scheme does not exist, in this paper, a Drone Force Deployment Optimization (DFDO) scheme is proposed to help schedule multi-drone operation scheduling and networked based remote multi-drone control.

A Goal Oriented Action Planning and Replanning method of Computer Generated Forces in Wargame (워게임에서 가상군의 목표지향행위계획 및 재 계획 방법)

  • Jung, Sung Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.120-125
    • /
    • 2013
  • This paper proposes a goal oriented action planning method that plans the behaviors of computer generated forces and a replanning method that replans new actions when the situations are changed in war game. This new method provides good expression because it is flexible and can do more realized description unlike the conventional finite state machines. As a result, proposed method has an advantage that it can describe the behaviors of computer generated forces as those of real soldier. However, since it is not deterministic it has some difficulties in analysing the decision processing of behaviors and making the computer generated forces do some specific actions. We employed combat plane models of air forces in order to verify the feasibility of our method. Finally, we could find that our method produced very similar behaviors to those of a real soldier. This paper describes our planning method, experimental results, and future works.

Infrared Signal Measurement with Bypass Ratio in a Small Engine Simulating a Turbofan (터보팬을 모사한 소형 엔진에서의 바이패스 비에 따른 적외선 신호 측정)

  • Choi, Jaewon;Jang, Hyeonsik;Kim, Hyemin;Choi, Seongman
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.5
    • /
    • pp.34-42
    • /
    • 2020
  • In modern air combat, infrared signals play an important role in the detection of opponents and must be reduced to improve survivability and stealth. In particular, IR signals generated in the wake of aircraft engines have high intensity and short wavelengths, so most heat-tracking missiles detect these signals. Accordingly, the measurement and characteristic analysis of Gas radiation signals from the engine's wake were carried out in this study. Micro turbojet engine has been configured to simulate a real aircraft turbofan engine, and the characteristics of IR signal reduction by adjusting the bypass ratio were identified. Through this, the IR signal characteristics for each wavelength are analyzed and verification of signal reduction technologies is performed.

Variation of Supersonic Aircraft Skin Temperature under Different Mach number and Structure (비행마하수와 형상에 따른 초음속 항공기 표면온도 변화)

  • Cha, Jong Hyun;Kim, Taehwan;Bae, Ji-Yeul;Kim, Taeil;Jung, Daeyoon;Cho, Hyung Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.463-470
    • /
    • 2014
  • Stealth technology of combat aircraft is most significant capability in recent air battlefield. As the detector of IR missiles is being developed, IR stealth capability which is evaluated by IR signature level become more important than it was in previous generation. Among IR signature of aircraft from various sources, aerodynamic heating dominates in long-wavelength IR spectrum of $8{\sim}12{\mu}m$. Skin temperature change by aerodynamic heating which is derived by effects of Mach number and structure. The 4th and 5th generation aircraft are selected for calculation of the skin temperature, and its height and velocity in numerical conditions are 10,000 m and Ma 0.9~1.9 respectively. Aircraft skin temperature is calculated by computing convection of fluid and conduction, convection and radiation of surface. As the aircraft accelerates to higher Mach number, maximum skin temperature increases more rapidly than average temperature and temperature distribution changes in more sharp, interactive ways. The 4th generation aircraft whose shape is more complex than that of the 5th generation aircraft have complicated temperature distribution. On the other hand, the 5th generation aircraft whose shape is relatively simple shows plain temperature distribution and lower skin temperature in terms of both average and maximum value.

A Dilemma of Kyrgyzstan Goes Through the Process of Nation-Building: National Security Problems and Independent National Defense Capability (국가건설과정에서 키르기스스탄의 국가안보와 자주국방의 딜레마)

  • Kim, Seun Rae
    • Journal of International Area Studies (JIAS)
    • /
    • v.14 no.4
    • /
    • pp.27-52
    • /
    • 2011
  • The regions of Central Asia have each acquired an elevated strategic importance in the new security paradigm of post-September 1lth. Comprised of five states, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan, Central Asia's newly enhanced strategic importance stems from several other factors, ranging from trans-national threats posed by Islamic extremism, drug production and trafficking, to the geopolitical threats inherent in the region's location as a crossroads between Russia, Southwest Asia and China. Although the U.S. military presence in the region began before September 11th, the region became an important platform for the projection of U.S. military power against the Taliban in neighboring Afghanistan. The analysis goes on to warn that 'with US troops already in place to varying extents in Central Asian states, it becomes particularly important to understand the faultlines, geography, and other challenges this part of the world presents'. The Kyrgyz military remains an embryonic force with a weak chain of command, the ground force built to Cold War standards, and an almost total lack of air capabilities. Training, discipline and desertion - at over 10 per cent, the highest among the Central Asian republics - continue to present major problems for the creation of combat-effective armed forces. Kyrgyzstan has a declared policy of national defence and independence without the use of non-conventional weapons. Kyrgyzstan participates in the regional security structures, such as the Collective Security Treaty Organisation (CSTO) and the Shanghai Co-operation Organisation (SCO) but, in security matters at least, it is dependent upon Russian support. The armed forces are poorly trained and ill-equipped to fulfil an effective counter-insurgency or counter-terrorist role. The task of rebuilding is much bigger, and so are the stakes - the integrity and sovereignty of the Kyrgyz state. Only democratization, the fight against corruption, reforms in the military and educational sectors and strategic initiatives promoting internal economic integration and national cohesion hold the key to Kyrgyzstan's lasting future

A Study on the Prediction Method of Information Exchange Requirement in the Tactical Network (전술네트워크의 정보교환요구량 예측 방법에 관한 연구)

  • Pokki Park;Sangjun Park;Sunghwan Cho;Junseob Kim;Yongchul Kim
    • Convergence Security Journal
    • /
    • v.22 no.5
    • /
    • pp.95-105
    • /
    • 2022
  • The Army, Navy, and Air Force are making various efforts to develop a weapon system that incorporates the 4th industrial revolution technology so that it can be used in multi-domain operations. In order to effectively demonstrate the integrated combat power through the weapon system to which the new technology is applied, it is necessary to establish a network environment in which each weapon system can transmit and receive information smoothly. For this, it is essential to analyze the Information Exchange Requirement(IER) of each weapon system, but many IER analysis studies did not sufficiently reflect the various considerations of the actual tactical network. Therefore, this study closely analyzes the research methods and results of the existing information exchange requirements analysis studies. In IER analysis, the size of the message itself, the size of the network protocol header, the transmission/reception structure of the tactical network, the information distribution process, and the message occurrence frequency. In order to be able to use it for future IER prediction, we present a technique for calculating the information exchange requirement as a probability distribution using the Poisson distribution and the probability generating function. In order to prove the validity of this technique, the results of the probability distribution calculation using the message list and network topology samples are compared with the simulation results using Network Simulator 2.

A Study on Efficient IPv6 Address Allocation for Future Military (미래 군을 위한 효율적인 IPv6 주소 할당에 관한 연구)

  • Hanwoo Lee;Suhwan Kim;Gunwoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.613-618
    • /
    • 2023
  • The advancement of Information and Communication Technology (ICT) is accelerating innovation across society, and the defense sector is no exception as it adopts technologies aligned with the Fourth Industrial Revolution. In particular, the Army is making efforts to establish an advanced Army TIGER 4.0 system, aiming to create highly intelligent and interconnected mobile units. To achieve this, the Army is integrating cutting-edge scientific and technological advancements from the Fourth Industrial Revolution to enhance mobility, networking, and intelligence. However, the existing addressing system, IPv4, has limitations in meeting the exponentially increasing demands for network IP addresses. Consequently, the military considers IPv6 address allocation as an essential process to ensure efficient network management and address space provisioning. This study proposes an approach for IPv6 address allocation for the future military, considering the Army TIGER system. The proposal outlines how the application networks of the Army can be differentiated, and IP addresses can be allocated to future unit structures of the Army, Navy, and Air Force, from the Ministry of National Defense and the Joint Chiefs of Staff. Through this approach, the Army's advanced ground combat system, Army TIGER 4.0, is expected to operate more efficiently in network environments, enhancing overall information exchange and mobility for the future military.