DOI QR코드

DOI QR Code

Effects of IR Reduction Design on RCS of UCAV

IR 저감 설계가 무인전투기의 RCS에 미치는 영향

  • Song, Dong-Geon (School of Mechanical and Aerospace Engineering and ReCAPT, Gyeongsang National University) ;
  • Yang, Byeong-Ju (School of Mechanical and Aerospace Engineering and ReCAPT, Gyeongsang National University) ;
  • Myong, Rho-Shin (School of Mechanical and Aerospace Engineering and ReCAPT, Gyeongsang National University)
  • Received : 2017.10.12
  • Accepted : 2018.03.08
  • Published : 2018.04.01

Abstract

The role of UCAV is to carry out various missions in hostile situations such as penetration and attack on the enemy territory. To this end, application of RF stealth technology is indispensable so as not to be caught by enemy radar. The X-47B UCAV with blended wing body configuration is a representative aircraft in which modern RCS reduction schemes are heavily applied. In this study, a model UCAV was first designed based on the X-47B platform and then an extensive RCS analysis was conducted to the model UCAV in the high-frequency regime using the Ray Launching Geometrical Optics (RL-GO) method. In particular, the effects of configuration of UCAV considering IR reduction on RCS were investigated. Finally, the effects of RAM optimized for the air intake of the model UCAV were analyzed.

UCAV는 적진 중심으로의 침투, 공격 등 적대적 상황에서 임무를 수행하는 것을 목표로 한다. 일차적으로 적의 레이더에 포착되지 않아야 하므로 RF 스텔스 기술의 적용이 필수적이다. 최신 RCS 저감 기술이 적용된 대표적인 비행체로는 Blended Wing Body 형태의 X-47B UCAV이다. 본 연구에서는 X-47B와 유사한 모델 UCAV 형상을 설계한 다음, Ray Launching Geometrical Optics(RL-GO) 기법을 활용하여 모델 UCAV의 고주파수 영역에서의 RCS 특성을 분석하였다. 특히 IR 저감이 고려된 UCAV 형상이 RCS에 미치는 영향성을 조사하였다. 마지막으로 모델 UCAV의 공기 흡입구에 최적화된 RAM을 적용하였을 때의 RCS 변화를 분석하였다.

Keywords

References

  1. Jo, Y. M., and Choi, S. I., "Shape Optimization of UCAV for Aerodynamic Performance Improvement and Radar Cross Section Reduction," Journal of Computational Fluids Engineering, Vol. 17, No. 4, 2012, pp. 56-68. https://doi.org/10.6112/kscfe.2012.17.4.056
  2. Myong, R. S., and Cho, T. H., "Development of a Computational Electromagnetics Code for Radar Cross Section Calculations of Flying Vehicles," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 33, No. 4, 2005, pp. 1-6. https://doi.org/10.5139/JKSAS.2005.33.4.001
  3. Son, M. H., "Core Technologies of High-Performance Tactical Aircraft; Combat Survivability and Stealth Technology," The Journal of Aerospace Industry, Vol. 75, 2012, pp. 57-97.
  4. Knott, E. F., Shaeffer, J. F., and Tuley, M. T., Radar Cross Section, 2 nd Ed., SciTech Publishing Inc., Boston, 2004.
  5. Mahulikar, S. P., Prasad, H. S. S. and Rao, G. A., "Infrared Signature Studies of Aerospace Vehicles," Progress in Aerospace Sciences, Vol. 43, 2007, pp. 218-245. https://doi.org/10.1016/j.paerosci.2007.06.002
  6. Johnston, L. J., "Predicting the Maximum-Lift Performance of Unmanned Combat Air Vehicle Planforms Using the Euler Equations," Proceeding of the EUCASS 2013 Conference, 2013, pp. 1-4.
  7. Zikidis, K., Skondras, A., and Tokas, C., "Low Observable Principles, Stealth Aircraft and Anti-Stealth Technologies," Journal of Computations & Modelling, Vol. 4, No. 1, 2014, pp. 129-165.
  8. Lee, W. J., Baek, S. M., Choi, K. S., and Joo, Y. S., "A Study on RAS Application for Stealth Aircraft," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, April 2016, pp. 130-131.
  9. Lee, W. J., Choi, K. S., Baek, S. M., and Joo, Y. S., "A Study on the EM Wave Absorber with Directive Periodic Pattern for Stealth Aircraft," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2015, pp. 122-125.
  10. Park, M. J., Lee, D. H., Myong, R. S., and Cho, T. H., "An Integrated System for Aerodynamic, Structural, and RF Stealth Analysis of Flying Vehicles," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 36, No. 1, 2008, pp. 86-91. https://doi.org/10.5139/JKSAS.2008.36.1.086
  11. Ahmed K., Electromagnetic Waves Propagation in Complex Matter, 1 st Ed., InTech., 2011.
  12. FEKO Comprehensive Electromagnetic Solutions, User's Manual, Suite 14.0, Altair, 2015.
  13. An, S. Y., Kim, W. C., and Oh, S. H., "A Study on the Effect of Engine Nozzle Configuration on the Plume IR Signature," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 40, No. 8, 2012, pp. 688-694. https://doi.org/10.5139/JKSAS.2012.40.8.688
  14. Gama, A. M., Rezende, M. C., and Dantas, C. C., "Dependence of Microwave Absorption Properties on Ferrite Volume Fraction in MnZn Ferrite/Rubber Radar Absorbing Materials," Journal of Magnetism and Magnetic Materials, Vol. 323, 2011, pp. 2782-2785. https://doi.org/10.1016/j.jmmm.2011.05.052
  15. Musal, H. M. Jr., and Smith, D. C., "Universal Design Chart for Specular Absorbers," IEEE Transactions on Magnetics, Vol. 26, No. 5, 1990, pp. 1462-1464. https://doi.org/10.1109/20.104411