• Title/Summary/Keyword: Air-recirculation

Search Result 365, Processing Time 0.03 seconds

Study on Two-Phase Flow generated by Two Jets with Height Difference (높이차가 존재하는 두 분류의 2상유동에 관한 연구)

  • 박상규;양희천;이용호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.88-93
    • /
    • 2000
  • In this study, the mixing process of two-phase flow generated by two jets with height difference is analyzed. The primary jet is jetted on the condition of the state mixed pulverized solid particles with air. The height difference between the main jet and the secondary jet is changed into three kinds(0, 32.5, 47.5mm). The velocity vector field, concentration field and turbulent properties of solid particles are measured by using 3-Dimensional Particles Dynamics Analyzer. As the height difference of two jets through the two nozzles increases, the solid particle recirculation zone and the dense zone in the combustion chamber become large. The solid particle concentration at the center of the combustion chamber gets dense because the particle velocity remains slow due to the existence of the solid particle recirculation zone. The particle concentration in the combustion chamber can also be influenced by the hight difference of two jets.

  • PDF

EXPERIMENTAL STUDY ON HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINE OPERATION WITH EXHAUST GAS RECIRCULATION

  • Choi, G.H.;Han, S.B.;Dibble, R.W.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.195-200
    • /
    • 2004
  • This paper is concerned with the Homogeneous Charge Compression Ignition (HCCI) engine as a new concept in engines and a power source for future automotive applications. Essentially a combination of spark ignition and compression ignition engines, the HCCI engine exhibits low NOx and Particulate Matter (PM) emissions as well as high efficiency under part load. The objective of this research is to determine the effects of Exhaust Gas Recirculation (EGR) rate on the combustion processes of HCCI. For this purpose, a 4-cylinder, compression ignition engine was converted into a HCCI engine, and a heating device was installed to raise the temperature of the intake air and also to make it more consistent. In addition, a pressure sensor was inserted into each of the cylinders to investigate the differences in characteristics among the cylinders.

The Plan to Increase Efficiency of Exhaust Gas Recirculation System (배기가스 재순환장치 효율 증대 방안)

  • Kim, Kwang Soo;Chung, Soon Suk;Heo, Yun Bok
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.3
    • /
    • pp.185-194
    • /
    • 2014
  • Internal engine is the main power source of vehicle and is the main source of air pollution. To satisfy this getting rigorous emission regulation, it must be solved simultaneously the dilemma of reducing emission gas and increasing heat efficiency. Diesel engine is preferred compare with gasoline engine in aspect of energy consumption but it must be solved reducing the containing of NOx, CO and HC. In this study: 1. Looking for alternative of performance improvement of Exhaust Gas Recirculation(EGR) which is emission gas reduction system. 2. Reducing malfunction of controlling emission gas. 3. Made possible precision control.

Oxy-Fuel and Flue Gas Recirculation Combustion Technology: A Review (순산소 및 배가스 재순환 연소 기술)

  • Kim, Hyeon-Jun;Choi, Won-Young;Bae, Soo-Ho;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.10
    • /
    • pp.729-753
    • /
    • 2008
  • Oxy-fuel combustion is a reliable way for the reduction of pollutants, the higher combustion efficiency and the separation of carbon dioxide. The review of recent research trends and the prospects of oxy-fuel combustion were presented. The difference in characteristics among oxy-fuel combustion, conventional air combustion, oxy-fuel combustion with flue gas recirculation (FGR) technique was investigated. Recent experiments of oxy-fuel combustion with/without FGR were surveyed in various ways which are optimized burner design, flame characteristics, the soot emission, the radiation effect, the NOx reduction and the corrosion of combustor. Numerical simulation is more important in oxy-fuel combustion because flame temperature is so high that conventional measurement devices have a restricted application. Equilibrium and non-equilibrium chemical reaction mechanisms for oxy-fuel combustion were investigated. Combustion models suitable for the numerical simulation of non-premixed oxy-fuel flame were surveyed.

Experimental Study of Material Effects on the Flame Behaviors in Meso-scale Rectangular Channels (메소 스케일 사각 채널 내 예혼합 화염의 거동에 미치는 벽면 물성의 영향에 관한 실험적 연구)

  • Guahk, Young Tae;Lee, Dae Keun;Ko, Chang-Bog
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.97-98
    • /
    • 2013
  • Flame behaviors in meso-scale rectangular channels are largely influenced by heat recirculation through wall. In order to investigate the effects of wall thermal property on the heat recirculation and flame behaviors, meso-scale rectangular channels, of which upper and lower walls are made of quartz, stainless steel and silicon carbide and front and rear walls of quartz for flame visualization, were fabricated in this study. As a result, characteristic mixture velocities of propane-air flame, such as transition, stationary, and instability onset velocities, were measured for each channel and various mixture conditions. The results show that thermal conductivity has a close relationship to the characteristic velocities.

  • PDF

A Study of the Combustion Flow Characteristics of a Exhaust Gas Recirculation Burner with Both Outlets Opening (양쪽 출구가 트인 배기가스 재순환 버너의 연소 유동 특성에 관한 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.696-701
    • /
    • 2018
  • The nitrogen oxides generated during combustion reactions have a great influence on the generation of acid rain and fine dust. As an NOx reduction method, exhaust gas recirculation combustion using Coanda nozzles capable of recirculating a large amount of exhaust gas with a small amount of air has recently been utilized. In this study, for the burner outlet with dual end opening, the use of a recirculation burner was investigated for the distribution of the pressure, streamline, temperature, combustion reaction rate and nitrogen oxides using computational fluid analysis. The gas mixed with the combustion air and the recirculated exhaust gas flow in the tangential direction of the circular cylinder burner, so that there is a region with low pressure in the vicinity of the fuel nozzle exit. As a result, a reverse flow is formed in the central portion of the burner near the center of the circular cylinder burner and the exhaust gas is discharged to the outside region of the circular cylinder burner. The combustion reaction occurs on the right side of the burner and the temperature and NOx distribution are relatively higher than those on the left side of the burner. It was found that the average NOx production decreased from an air flow ratio of 1.0 to 1.5. When the air flow ratio is 1.8, the NOx production increases abruptly. It is considered that the NOx production reaction increases exponentially with temperature when the air ratio is more than 1.5 and the NOx production reaction rate increases rapidly on the right-hand side of the burner.

A Study on the Combustion Flow Characteristic and NOx Reduction of the Exhaust Gas Recurculation Burner using Coanda Nozzles (코안다 노즐을 이용한 배기가스 재순환 버너의 연소 유동 특성 및 NOx 저감에 관한 연구)

  • Ha, Ji Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.3
    • /
    • pp.53-60
    • /
    • 2017
  • Various researches have been conducted for the reduction of NOx at the combustion furnace and exhaust gas recirculation method is commonly used technology for NOx reduction. The present research adopted coanda nozzles at the outside pipes of furnace to entrain the exhaust gas for the exhaust gas recirculation and the mixed gas was ejected to the tangential direction to cause the swirl flow in the furnace. The combustion flow characteristics in the exhaust gas recirculation burner with coanda nozzle has been elucidated by analyzing the swirl flow streamlines, temepraure and reaction rate distribution in the furnace. The exhaust gas entrained flow rate has been investigated by changing the excess air factor and coanda nozzle gap and the exhaust gas entrained flow rate increased with the increase of excess air factor and it decreased with the increase of coanda nozzle gap. The mean temperature at the exit plane of exhaust gas decreased with the excess air factor and it was little affected by the increase of coanda nozzle gap. The NOx mass fraction at the exhaust gas exit plane remarkably decreased with the excess air factor and it was also little affected by the increase of coanda nozzle gap.

The Characteristic of Extinguishment of Engine Nacelle Fire Using a Bluff Body (둔각 물체를 이용한 엔진 나셀 화재 소화 특성)

  • Lee, Jung-Ran;Lee, Eui-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.20-25
    • /
    • 2012
  • The purpose of the study is to assess the extinguishing concentration of inert gases in engine nacelle fire. The experiment was performed with a two dimensional rectangular bluff body stabilized flames, where the fuel was ejected to counter flow and co-flow against an oxidizer stream. Two inert gases, $CO_2$ and $N_2$, were used for extinguishing agent in the oxidizer and methane was used for fuel. The main experimental parameters were the direction of injecting fuel, the kinds of agent and the velocity ratio between air and fuel streams, which controlled the mixing characteristic near bluff body and the strength of recirculation zone in the downstream. The result shows the flame structure and the mode were strongly dependent with fuel/air ratio and the fuel jet direction. For both flow configurations, the extinguishing concentration of $CO_2$ was smaller than the $N_2$ because of the large heat capacity of $CO_2$. However, the concentration of inert gasesat blowout was much smaller than those in the cup burner and coflow jet diffusion flames, which implies that the extinction mechanism of bluff body stabilized flames was mainly due to the aerodynamic aspect. Compared to co-flow fuel injection, the extinguishing concentration of inert gases under counter flow configuration was lower. The effect of direction might result from the mixing characteristic and strength of recirculation zonearound a bluff body. More details should be investigated for the characteristic of recirculation zone in the wake of bluff body using the LES(Large Eddy Simulation).

The Effect of Fire Plume on the Characteristics of Air Flow and $CO_2$Extinguishant Transfer (화재화염이 유동 및 $CO_2$소화제 전달특성에 미치는 영향)

  • 박찬수;최주석
    • Fire Science and Engineering
    • /
    • v.16 no.4
    • /
    • pp.33-43
    • /
    • 2002
  • To analyze the effect of fire plume on the characteristics of air flow and $CO_2$, extinguishant transfer when extinguishant is injected into a closed space similar to a marine engine room with fire plume, a numerical simulation on a space was performed. Flow fields and $CO_2$, concentration fields are calculated according with the variation of the location of nozzles. In all cases excepting the case of all nozzles located in the right side of ceiling, an counterclockwise & clockwise recirculation flow was found in the region of the right and left side of the nozzle on the second floor and such a recirculation flow greatly affected mass transfer and the diffusion process of $CO_2$, extinguishant. In the region of the first floor with fire plume, the diffusion process of $CO_2$, extinguishant was in agreement with the extension process of recirculation flow. It is considered that the result of this study can be useful to designing the arrangement of nozzles for the $CO_2$ fire fighting equipments in a marine engine room.

A Study on the Effects of Hydrogen Addition and Swirl Intensity in CH4-Air Premixed Swriling Flames (메탄-공기 예혼합 선회화염에서 수소첨가와 선회강도 영향에 관한 연구)

  • KIM, HAN SEOK;CHO, JU HYEONG;KIM, MIN KUK;HWANG, JEONGJAE;LEE, WON JUNE
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.6
    • /
    • pp.593-600
    • /
    • 2019
  • The combustion characteristics of methane/hydrogen pre-mixed flame have been investigated with swirl stabilized flame in a laboratory-scale pre-mixed combustor with constant heat load of 5.81 kW. Hydrogen/methane fuel and air were mixed in a pre-mixer and introduced to the combustor through a burner nozzle with different degrees of swirl angle. The effects of hydrogen addition and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using particle image velocimetry (PIV), micro-thermocouples, various optical interference filters and gas analyzers to provide information about flow velocity, temperature distributions, and species concentrations of the reaction field. The results show that higher swirl intensity creates more recirculation flow, which reduces the temperature of the reaction zone and, consequently, reduces the thermal NO production. The distributions of flame radicals (OH, CH, C2) are dependent more on the swirl intensity than the percentage of hydrogen added to methane fuel. The NO concentration at the upper part of the reaction zone is increased with an increase in hydrogen content in the fuel mixture because higher combustibility of hydrogen assists to promote faster chemical reaction, enabling more expansion of the gases at the upper part of the reaction zone, which reduces the recirculation flow. The CO concentration in the reaction zone is reduced with an increase in hydrogen content because the amount of C content is relatively decreased.