• 제목/요약/키워드: Air-ejection

검색결과 39건 처리시간 0.024초

미세액적의 자기정렬 기법을 포함한 패터닝 공법에 대한 해석적인 연구 (A Numerical Study on Patterning Process Including a Self-Alignment Technique of a Microdroplet)

  • 서영호;손기헌
    • 대한기계학회논문집B
    • /
    • 제33권1호
    • /
    • pp.28-38
    • /
    • 2009
  • Numerical simulation is performed for microdroplet deposition on a pre-patterned micro-structure. The liquid-air interface is tracked by a level-set method, which is improved by incorporating a sharp-interface modeling technique for accurately enforcing the matching conditions at the liquid-gas interface and the no-slip condition at the fluid-solid interface. The method is further extended to treat the contact angle condition at an immersed solid surface. The present computation of a patterning process using microdroplet ejection demonstrates that the multiphase characteristics between the liquid-gas-solid phases can be used to improve the patterning accuracy.

폐형광등 유리를 활용한 고굴절 글래스비드의 제조 연구 (A Basic Study for Manufacturing High Refractive Beads from the Waste Fluorescent Glass)

  • 이기헌;이동훈;송영준;김창권
    • 자원리싸이클링
    • /
    • 제29권3호
    • /
    • pp.51-60
    • /
    • 2020
  • 본 연구는 폐형광등을 사용하여 고굴절 유리비드를 제조하기 위한 최적 조건 도출을 위해 진행되었다. 제작된 유리비드는 XRD 분석과 더불어 물리·화학적 분석을 통해 유리비드의 굴절률 및 공기혼합비율, 방출속도에 따른 영향을 조사하였다. 연구를 통해 얻어진 결과는 다음과 같다. 형광등 재활용유리로 제작된 글라스 비드와 일반 재활용 유리로 제작된 글라스비드 시료를 XRF 분석결과 일반 재활용 유리로 제작한 글라스비드에 CaO가 11.7 wt% 함유되 있는 반면 형광등 재활용 유리로 제작한 글라스비드에는 CaO 7.8 wt% 함량 비중과 비교해 3.9 wt% 함량 비중이 더 높은 것으로 분석되었다. 또한 형광등 재활용 유리로 제작된 글라스비드에는 일반 재활용 유리로 제작한 글라스비드에 함유되지 않은 ReO2 0.0108 wt%, BaO 0.071 wt%, NiO 0.0039 wt% 가 함유되어 있는 것을 알 수 있었다. 일반 재활용 유리로 제작된 글라스 비드와 폐형광등을 재활용하여 유리로 제작된 글라스비드의 Refractive Index 비교 시 폐형광등으로 제작된 유리비드가 일반 재활용 유리로 제작된 글라스비드보다 더 작은 입자 크기분포와 높은 굴절률을 갖는 것을 알 수 있었다. 결론적으로 폐형광 등 재활용 유리를 구상 형태의 글라스비드로 제작하기 위하여 Kiln 방식의 공정에서는 공기 혼합비율 1.7, 화염온도조건 940℃ 20 m/sec 조건에서 가장 높은 생성율을 확인할 수 있었다.

자동회전 과학 탑재체 사출 기능을 갖춘 기상정보 수집용 캔위성 체계 개발 (Development of CanSat System for Collecting Weather Information With Autorotating Science Payload Ejection Function)

  • 김영준;박준수;남재영;이준혁;최윤원;유승훈;이상현;이영건
    • 한국항공우주학회지
    • /
    • 제50권8호
    • /
    • pp.573-581
    • /
    • 2022
  • 본 논문은 단풍나무 씨앗형 자동회전 과학 탑재체 2개를 사출하고 기상정보를 수집하는 임무를 하는 캔위성을 개발하는 내용을 다루고 있다. 캔위성은 2개의 자동회전형 과학 탑재체와 이를 실을 수 있는 캔위성 본체로 구성된다. 캔위성 본체는 과학 탑재체를 사출하기 위한 장치들과 지상국과의 통신을 위한 장치들을 탑재하고, 각기 다른 지정 고도에서 과학 탑재체를 하나씩 사출한다. 과학 탑재체는 큰 날개와 탑재 공간으로 구성되며, 큰 날개는 회전하면서 양력을 발생시켜 낙하 속도를 늦춘다. 구체적으로, 사출된 이후 20m/s 이하의 속도로 하강하며 회전율, 기압과 온도를 측정하고 초당 1회의 속도로 측정값을 캔위성본체로 송신한다. 통신 시스템은 마스터-슬레이브 구조로 과학 탑재체는 모든 데이터를 마스터인 캔위성본체로 송신하고, 캔위성 본체는 수신받은 데이터와 자체 데이터를 종합하여 지상국으로 전송한다. 자체 개발한 지상국 소프트웨어를 이용해 수신하는 모든 데이터를 실시간으로 확인할 수 있다. 시뮬레이션 환경에서 모의실험을 수행했고, 임무 요구조건을 만족하는 캔위성의 성능을 확인할 수 있었다.

사각형 둔각물체 주위의 유동장 특성에 관한 수치적 연구 (Numerical Study on the Isothermal Flow Field abound Rectangular Cross Section Bluff Body)

  • 이정란;이의주
    • 한국안전학회지
    • /
    • 제27권5호
    • /
    • pp.35-41
    • /
    • 2012
  • The Numerical simulation was performed on the flow field around the two-dimensional rectangular bluff body in order to complement the previous experimental results of the bluff body stabilized flames [1]. For both fuel ejection configurations against an oxidizer stream, the flame stability was affected mainly by vortex structure and mixing field near bluff body. FDS(Fire Dynamic Simulator) based on the LES(Large Eddy Simulation) was employed to clarify the isothermal mixing characteristic and wake flow pattern around bluff body. The air used atmosphere and the fuel used methane. The result of counter flow configuration shows that the flow field depends on air velocity but the mixing field is influenced on the fuel velocity. At low fuel velocity the fuel mole fraction is below the flammable limit and hence the mixing is insufficient to react. Therefore, as the result, the flame formed at low fuel velocity is characterized by non-premixed flames. For the flow field of co-flow configuration, flame stability was affected by fuel velocity as well as air velocity. the vortex generated by fuel stream has counter rotating direction against the air stream. Therefore, the momentum ratio between air and fuel stream was important to decide the flame blow out limit, which is result in the characteristic of the partially premixed reacting wake near extinction.

PIV에 의한 수중램제트추진의 기본특성에 관한 연구 (A Study on Fundamental Characteristics of Underwater Ram-Jet Propulsion by PIV)

  • 양창조;김춘식;최민선;김진구;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권3호
    • /
    • pp.36-42
    • /
    • 2000
  • A fundamental experimental study for an alternative proposal to super-speed craft propulsion system called underwater ram-jet propulsion by high pressure air ejection as driving force was investigated. For basic study of the effects of ram-jet propulsion performance, a simple underwater ram-jet flow field was established and PIV(Particle Image Velocimetry) method was adopted to analyse the jet-induced flow appearing at ram intake, mixing chamber and nozzle. Some flow dynamics relating to the high-speed ram-jet effect were discussed for the basic understanding of the its propulsion principle.

  • PDF

해상용 고사분수의 운동학적 특성 연구 (A Study on the Kinematic Characteristics of the Ocean High Elevation Fountain)

  • 이춘태
    • 한국유체기계학회 논문집
    • /
    • 제14권6호
    • /
    • pp.85-90
    • /
    • 2011
  • Recently, many high elevation fountain are constructed for the beauty of beach landscape. Typically, a fountain has several nozzles that shoots water upwards or at an angle into the air. But unfortunately, the weather and wind can cause the water soak nearby walkways and pedestrians. Therefore, in this study, a mathematical model of high elevation fountain is suggested to predict the actual travelling distance of water droplet by the wind. To simplify our treatment of the water flow and to avoid issues such as fluid dynamics and surface tension, we have adopted a particle model for the fountain water. The particles are assumed not to interact with each other, and do not deform during their flight through air.

Experimental Study on Performance of a Propulsive Nozzle with a Blower Piping System

  • Sakamoto, Masahiko
    • International Journal of Fluid Machinery and Systems
    • /
    • 제6권4호
    • /
    • pp.213-221
    • /
    • 2013
  • The characteristics of the thrust for ship propulsion equipment directly driven by air compressed by pressure fluctuation in a blower piping system are investigated. The exhaust valve is positioned upon the air ejection hole in the discharge pipe in order to induce the large-scale pressure fluctuation, and the effects of the valve on the pressure in the pipes and the thrust for the propulsive nozzle are examined. The pressure in the pipes decreases immediately after the valve is opened, and it increases just before the valve is closed. The thrust for the propulsive nozzle monotonically increases with increasing number of revolutions and depth. The interfacial wave in the nozzle appears in the frequency of approximately 4Hz, and it is important for the increase of the thrust to synchronize the opening-closing cycle for the exhaust valve with the generation frequency of the interfacial wave. The finite difference lattice Boltzmann method is helpful to investigate the characteristics of the flow in the nozzle.

삼각형상 그루브 채널에서 맥동유동에 의한 열전달 향상에 관한 실험적 연구

  • 권오준;이대영;김서영;강병하;김용찬
    • 설비공학논문집
    • /
    • 제13권10호
    • /
    • pp.1009-1016
    • /
    • 2001
  • The heat transfer enhancement by pulsatile flow in a triangular grooved channel has been experimentally investigated in this study The experiment was performed in the ranges of the Reynolds number from 270 to 910, the pulsatile fraction from 0.125 to 0.75, and the Strouhal number from 0.084 to 0.665. It was measured that the heat transfer improves up to 350% compared with the steady flow case at Re=270,$\eta=0.5$, and St=0.335. The heat transfer enhancement was found to increase as the pulsatile fraction increases and the Reynolds number decreases. It was also found that the heat transfer enhancement is maximized at a specific pulsatile frequency satisfying the resonant condition. The nondimensional frequency, i.e., the Strouhal number at the resonant condition was found to increase as the Reynolds number decreases. The flow visualization revealed that the heat transfer enhancement results from the strong mixing caused by the repeating sequence of vortex formation, rotation and subsequent ejection from the grooves by the pulsatile flow.

  • PDF

PIV에 의한 수중램제트의 기초실험 (Fundamental Experiment of Underwater Ram-jet by PIV Measurement)

  • 김춘식
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 춘계학술대회 논문집(Proceeding of the KOSME 2000 Spring Annual Meeting)
    • /
    • pp.165-170
    • /
    • 2000
  • A fundamental experimental study for a substitute proposal to super-speed craft propulsion system called underwater ram-jet propulsion by high pressure air ejection as driving force was investigated. for basic study of effect of ram-jet propulsion performances ismple underwater ram-jet flow field was established and PIV(Particle Image Velocimetry) method was adopted to analyse the jet-induced flow appearing at ram intake mixing chamber and nozzle. Some flow dynamics relating to the high-speed ejector effect were discussed for the basic understanding for the ram-jet propulsion principle.

  • PDF

화학레이저 압력회복을 위한 축소형 이젝터의 성능변수 (Parametric Study of Subscale Ejector for Pressure Recovery of Chemical Lasers)

  • 김세훈;김형준;권세진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.135-138
    • /
    • 2002
  • High-speed ejection of burnt gases from the resonator cavity is essential for performance optimization of the chemical laser system. Additionally, to maintain the population of lasing species at a level for maximum optical power, the pressure within the cavity must be of order of 10 torr. In the present study, a small-scale ejector was designed and built for parametric study of its performance. High-pressure air was used as a motive gas. Measurements include schlieren visualization and pressure distribution trace near the ejector nozzle and along the diffuser downstream of the ejector. preliminary tests showed performance of the ejector is a function of parameters including mass flow rate and stagnation pressure of the motive gas, ejector nozzle area ratio, throat area of the diffuser downstream of the ejector.

  • PDF