• Title/Summary/Keyword: Air-cooled slag

Search Result 32, Processing Time 0.023 seconds

Strength Characteristics of Concrete Containing Blast-Funrnace Slag as Coarse Aggregate (고로슬래그를 굵은골재로 이용한 콘크리트의 강도특성)

  • 한상호
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.59-68
    • /
    • 2000
  • A series of experiments were performed to investigate the strength characteristics of concrete which contain air cooled blast-furnace slag as coarse aggregate. The slag is a by product of GISC. The experimental conditions are varied with three different W/C(45%, 50%, 55%) and the weight of water and S/a are constant. The strength properties of the concrete at 7days, 28days, 90days are examined. Also the same strength properties are examined for the normal concrete which contain river gravel and crushed stone respectively as coarse aggregate. As the comparison results of the strength properties, it was found that the compressive strength development of concrete containing blast-furnace slag is better than that of concrete using river gravel at early age, however this is adversely at long-term age, and the tensile and flexural strength of the concrete were not nearly affected by water-cement ratio.

Effect of firing temperatures on alkali activated Geopolymer mortar doped with MWCNT

  • Khater, H.M.;Gawwad, H.A. Abd El
    • Advances in nano research
    • /
    • v.3 no.4
    • /
    • pp.225-242
    • /
    • 2015
  • The current investigation aims to study performance of geopolymer mortar reinforced with Multiwalled carbon nanotubes upon exposure to $200^{\circ}C$ to $1000^{\circ}C$ for 2 hrs. MWCNTs are doped into slag Geopolymer mortar matrices in the ratio of 0.0 to 0.4, % by weight of binder. Mortar composed of calcium aluminosilicate to sand (1:2), however, binder composed of 50% air cooled slag and 50% water cooled slag. Various water / binder ratios in the range of 0.114-0.129 used depending on the added MWCNT, while 6 wt., % sodium hydroxide used as an alkali activator. Results illustrate reduction in mechanical strength with temperature except specimens containing 0.1 and 0.2% MWCNT at $200^{\circ}C$, while further increase in temperature leads to decrease in strength values of the resulting geopolymer mortar. Also, decrease in firing shrinkage with MWCNT up to 0.1% at all firing temperatures up to $500^{\circ}C$ is observed, however the shrinkage values increase with temperature up to $500^{\circ}C$. Further increase on the firing temperature up to $1000^{\circ}C$ results in an increase in the volume due to expansion.

Recycling and Characteristics of Plasma Melting Slag Materials Produced by Different Cooling Methods (플라즈마 용융방식으로 배출된 슬래그의 냉각방식에 따른 재료적 특성 및 재활용)

  • Chung, Juyoung;Bae, Wookeun;Kim, Moonil;Park, Seyong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.7
    • /
    • pp.25-31
    • /
    • 2010
  • In this study, it was intended to suggest new cooling method that enables to improve the applicability and added value higher than existing slag by applying new cooling method(powder cooling slag) at the time discharging slag, which is produced from the ash melting system that the plasma torch is used for the first time in Korea. It is suggested the applicative direction in the development of future recycling process by discovering its nature of material and applicative possibility as earthwork material. The ashes produced after the sewage sludge discharged from Y city was incinerated by the fluidized bed method and was used as test materials. As result of XRF(X-Ray Flourescence Spectrometry) analysis, main ingredient of sewage sludge ashes was $SiO_2$(32%) besides CaO, $Al_2O_3$, $Fe_2O_3$, and so on. In addition, as result of XRD analysis, traditional diffuse pattern of glass could be found from granulated air-cooled slags, while a minor crystal phase could be observed from powder cooling slag, because the powder on the surface exists in the state not melted. From EDX(Energy Dispersive X-ray Spectroscopy) analysis, it is deemed that powder ingredient has no change before and after it is used as cooling medium, and accordingly it is thought that the powder can be produced as the material where the function is added if used in different shape.

Utilization of Blast Furnace Slag Quenched with Water as a Source of Silicate Fertilizer -I. Physico-chemical and Mineralogical Characteristics (급랭광재(急冷鑛滓)의 비료화(肥料化)에 관(關)한 연구(硏究) -I. 급랭광재(急冷鑛滓)의 특성(特性))

  • Shin, Jae-Sung;Lim, Dong-Kyu;Kim, Maun-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.4
    • /
    • pp.343-346
    • /
    • 1983
  • This paper was prepared to characterize a physico-chemical and mineralogical examination on blast furnace slag as a source of silicate fertilizer, which was quenched with high pressure water stream in process of iron refinery at Pohang Iron and Steel Manufacturing Inc. Quenched slag was more coarse in particle size compared to present commercial silicate fertilizer milled from air-cooled slag and mostly generated in size of 1 to 2 mm. The total chemical composition of quenched and air-cooled slags was same but mineralogical composition was quite different. The former was composed of amorphous materials resulting in more soluble silica content, however, the latter contained dominantly crystalline minerals such as akermanite, gehlenite and wollastonite which meant less soluble ones. Latent cementing property and angular surface of gain of the slag made it difficult to apply the slag directly, however, it could be used as a source of silicate fertilizer and soil ammendment.

  • PDF

Evaluation of the Asph81t Mixture Performance with Waste Materials

  • Lee, Kwan-Ho;Lovell, C
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.17-34
    • /
    • 1996
  • The objective of this paper is to evaluate the asphalt mixture performance with pyrolyzed carbon black(CBP) and air -cooled iron blast furnace slag. Marshall mix design was performed to determine the optimum binder content, The optimum binder content ranged from 6.3 percent to 7.75 percent. Dynamic creep testing was carried out using mixtures at the optimum binder content. Based on the test results, the use of pyrolyzed carbon black and slag in the asphalt pavement showed a positive result, such as the increase of Marshall stability, the decrease of the strain rate and the decrease in the mix stiffness rate at high temperature(5$0^{\circ}C$) and 137.9 kPa confinement. Within the limits of this research. it was concluded that pyrolyzed carbon black as an additive and slag as a coarse aggregate could be used to produce an asphalt paving mixture that has good stability, stiffness, and rutting resistance.

  • PDF

Reaction Characteristics of the CAC with Various Gypsum Type and Mixing Ratio (석고 종류 및 혼입률에 따른 CAC 반응 특성)

  • Choi, Sun-Mi;Kim, Jin-Man;Koo, Ja-Sul
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.83-91
    • /
    • 2021
  • Ladle furnace slag is a byproduct of the steel-making process, and it contains the mineral β-C2Sandtherapid-settingmineral (dependingonwhichreducingagenthasbeenused). Ladle furnace slag is often treated through slow cooling, which causes the slag to lose its reactivity. In this study, the properties of air-quenched CAC and pulverized ladle furnace slag containing gypsum were evaluated, and the optimal mixing ratio was determined for broadening their usage. Consequently, the properties of CAC aredemonstrated by the dissolution of gypsum after a period of three hours and the content of gypsum after a period of one day. The optimal mixing ratio of anhydrate and hemihydrate gypsum is found to be within 30% and that of dihydrate gypsum is found to be higher than 35%. Furthermore, based on the results of CAC with dihydrate gypsum, the applicability of the by-product dihydrate gypsum has been verified.

CO2 Sequestration and Utilization of Calcium-extracted Slag Using Air-cooled Blast Furnace Slag and Convert Slag (괴재 및 전로슬래그를 이용한 CO2 저감 및 칼슘 추출 후 슬래그 활용)

  • Yoo, Yeongsuk;Choi, Hongbeom;Bang, Jun-Hwan;Chae, Soochun;Kim, Ji-Whan;Kim, Jin-Man;Lee, Seung-Woo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.101-111
    • /
    • 2017
  • Mineral carbonation is a technology in which carbonates are synthesized from minerals including serpentine and olivine, and industrial wastes such as slag and cement, of which all contain calcium or magnesium when reacted with carbon dioxide. This study aims to develop the mineral carbonation technology for commercialization, which can reduce environmental burden and process cost through the reduction of carbon dioxide using steel slag and the slag reuse after calcium extraction. Calcium extraction was conducted using NH4Cl solution for air-cooled slag and convert slag, and ${\geq}98%$ purity calcium carbonate was synthesized by reaction with calcium-extracted solution and carbon dioxide. And we conducted experimentally to minimize the quantity of by-product, the slag residue after calcium extraction, which has occupied large amount of weight ratio (about 80-90%) at the point of mineral carbonation process using slag. The slag residue was used to replace silica sand in the manufacture of cement panel, and physical properties including compressive strength and flexible strength of panel using the slag residue and normal cement panel, respectively, were analyzed. The calcium concentration in extraction solution was analyzed by inductively coupled plasma optical emission spectrometer (ICP-OES). Field-emission scanning electron microscope (FE-SEM) was also used to identify the surface morphology of calcium carbonate, and XRD was used to analyze the crystallinity and the quantitative analysis of calcium carbonate. In addition, the cement panel evaluation was carried out according to KS L ISO 679, and the compressive strength and flexural strength of the panels were measured.

Development of Concrete and Evaluation of Properties of Combined Steel making Slag Aggregates for Offshore Structure Production (I) (해양구조물 제조를 위한 제강슬래그 골재 조합별 물성평가 및 콘크리트 개발( I ))

  • Jung, Won-Kyong;Hwang, Yun-Seok;Park, Dong-Cheon;Cho, Bong-Suk
    • Resources Recycling
    • /
    • v.25 no.2
    • /
    • pp.49-59
    • /
    • 2016
  • Steel slag is being recycled into industrial by-products for civil generated inevitably in the seasonal course, road and cement raw materials. However, the field of recycling most of the bottom portion is concentrated in the areas that are required to take advantage of the situation in various fields taking advantage of the steel slag. But various studies to take advantage of the steel slag as aggregate for concrete made for limiting slag was a situation that most of the studies are incomplete research on the suitability of as aggregate for concrete practical relates to an expandable suppressed. In this study, the separation of the slag aggregate according to the production methods to assess the feasibility aggregate for concrete aggregates, including through Steel making slag, a total of seven kinds of steel slag aggregate. Studies show that ordinary concrete, steel slag aggregate for aggregate and on the equally to take advantage of grading, chloride content standards such as to what is lacking, although appropriate aggregate of concrete include the deployment of only in special sectors through the combination was assessed to have a very high.

An Effect of $Al_{2}O_{3}$ on the Reaction between Molten Converter Slag and CaO pellet (용융전로(熔融轉爐)슬래그와 CaO펠렛의 상호반응(相互反應)에 미치는 $Al_{2}O_{3}$의 영향(影響))

  • Kim, Young-Hwan;Ko, In-Yong
    • Resources Recycling
    • /
    • v.15 no.2 s.70
    • /
    • pp.3-9
    • /
    • 2006
  • As a basic study on the conversion of molten converter slag to the ordinary portland cement, the effects of $Al_{2}O_{3}$ addition on the interface reaction between solid CaO and molten converter slag has been studied. Alumina added converter slag whose basicity was controlled to 1 and 2 was melted and hold for 30 minutes in MgO crucible at $1500^{\circ}C$. Then sintered CaO pellet heated at the same temperature was dipped into the molten slag and held for 30minutes. After the reaction, the crucible was cooled in air and the specimen was cut off to the horizontal direction of the crucible. The dissolution rate of CaO pellet with the addition of $Al_{2}O_{3}$ was measured by the change of the radius or sintered CaO pellet and the interface layer was observed by SEM/EDX. As a result. At the basicity 2 slag, thickness of created $C_{3}S$ layer increased 3.5 times and quantity of $C_{6}AF_{2}\;or\;C_{4}AF$ phase increase 2 times than baisicy 1 slag.

The Interface Reaction Between Molten Converter Slag and $C_3A(3CaO{\cdot}Al_2O_3)$ Pellet (용융전로(熔融轉爐)슬래그와 $C_3A(3CaO{\cdot}Al_2O_3)$ 펠렛사이의 계면반응(界面反應))

  • Kim, Young-Hwan;Ko, In-Yong
    • Resources Recycling
    • /
    • v.14 no.5 s.67
    • /
    • pp.13-17
    • /
    • 2005
  • As a basic study for recycling molten converter slag as an ordinary portland cement (OPC) by a conversion process, the reaction mechanism and the rate of the formation of $C_4AF$ which is one of the main components of OPC were investigated. The converter slag whose basicity was controlled by adding reagent grade $SiO_2$ was melted and hold for 30 minutes in MgO crucible at $1300^{\circ}C{\sim}1350^{\circ}C$. Then, the sintered CaO pellet heated at the same temperature was dipped into the molten slag and hold for $10{\sim}30$minutes. After the reaction, the crucible was cooled in air and the specimen was cut off to the horizontal direction of the crucible. The dissolution rate of $C_3A$ pellet was measured by the change of radius of the sintered $C_3A$ pellet, and the formed phase of $C_4AF$ was observed by SEM/EDX. As a result, the dissolution rate of $C_3A$ pellet into molten slag was increased from $0.75{\times}10^{-4}(cm/sec)$ at $1300^{\circ}C$ to $1.67{\times}10^{-4}(cm/sec)$ at $1350^{\circ}C$, and the mixed layer of $C_4AF$ and $C_{12}A_7$ was found between slag and $C_3A$ pellet.