• Title/Summary/Keyword: Air-conditioning and Heating system

Search Result 800, Processing Time 0.027 seconds

A Case Study on the Economic Analysis for an Advanced Technology-Based HYAC System Using LCC Technique (LCC 기법을 이용한 신기술 냉 $\cdot$ 난방 공조설비 시스템의 경제성 분석에 관한 사례연구)

  • Kim Yong-Su;Hwang Seong-Su
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.2 s.24
    • /
    • pp.129-138
    • /
    • 2005
  • The purpose of this study is to assess economic effects for an advanced technology-based HVAC system. The study has been performed using LCC technique for the economic analysis. Data for LCC analysis are collected from estimation and interview of estimators and maintenance experts of buildings. Based on the LCC analysis, the economic effect of a new HVAC system has been predicted as follows : for the investment during 15 years of study period, (1) $21.6\%$ of LCC saving is predicted, (2) return rate for the investment is 4.8 times in case of new construction, and 14.4 times in case of building remodelling.

Monitoring of Formaldehyde Concentration in Exhibition Hall Using Passive Sampler (Passive Sampler를 이용한 유물 전시관내 폼알데하이드 농도 모니터링)

  • Lee, Sun Myung;Lim, Bo A;Kim, Seojin
    • Journal of Conservation Science
    • /
    • v.33 no.5
    • /
    • pp.319-329
    • /
    • 2017
  • In this study, formaldehyde concentrations in two exhibition halls were monitored using a passive sampler from May 2012 to April 2013. Formaldehyde concentrations in the exhibition halls were 5 to 36 times higher than concentrations outdoors. Concentrations inside the exhibition room and showcase varied according to pollutant source, HVAC(heating, ventilation, air conditioning)system and environment management. The formaldehyde concentration levels were corrected according to a standard method prescribed by Indoor Air Quality Management Law of the Ministry of Environment, Korea. As a result, Most concentration levels exceeded the exhibition standard of the Ministry of Environment($100{\mu}g/m^3$) and artifacts conservation standard of Tokyo National Museum($50{\mu}g/m^3$). Seasonal concentrations in the exhibition room and showcase were in the order summer>fall>spring>winter. Formaldehyde emissions increased in summer when air temperature and relative humidity are both high. Formaldehyde concentration distribution according to the temperature and relative humidity showed positive correlation. Air temperature showed good correlation because $R^2$ was in the range of 0.8~0.9. Analysis of formaldehyde emission characteristics in the exhibition hall would be helpful in efforts to improve indoor air quality.

Heat-up Calculation for the Auxiliary Feed Water Pump Room at Ulchin Units 3 and 4 for Loss of HVAC Accidents (HVAC 상실사고시 울진원전 3/4 호기의 보조급수펌프 격실 온동상승 평가)

  • Yoon, Churl;Park, Jin-Hee;Hwang, Mee-Jeong;Han, Sang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.553-562
    • /
    • 2012
  • Computational Fluid Dynamics (CFD) analysis has been performed to estimate the air temperature inside an Auxiliary Feed Water (AFW) Motor-Driven (MD) pump room for the case where there is loss of Heating, Ventilation, and Air-Conditioning (HVAC). A transient calculation for the closed pump room without cooling by any HVAC system shows that the volume-averaged air temperature reaches around $60^{\circ}C$ for a transient period of 8.0 h. From previous studies, the external air and surface boundary temperatures are assumed to increase slowly starting from an initial temperature of $35^{\circ}C$. For the cases where the door is opened at 2, 4, and 6 h after the initiation of HVAC failure, the average air temperature promptly drops by about $4^{\circ}C$ when the door is opened and then slowly increases. The current calculations based on the CFD technique predict the rate of increase of air temperature to be lower than that determined by previous conservative calculations on the basis of a lumped model.

Calculation of Required Coolant Flow Rate for Photovoltaic-thermal Module Using Standard Meteorological Data and Thermal Analysis (표준기상 데이터와 열해석을 이용한 태양광열 모듈의 필요 냉각수량 산출)

  • Lee, Cheonkyu;Jeong, Hyo Jae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.18-22
    • /
    • 2022
  • Photovoltaics (PV) power generation efficiency is affected by meteorological factors such as temperature and wind speed. In general, it is known that the power generation amount decreases because photovoltaics panel temperature rises and the power generation efficiency decreases in summer. Photovoltaics Thermal (PVT) power generation has the ad-vantage of being able to produce heat together with power, as well as preventing the reduction in power generation efficien-cy and output due to the temperature rise of the panel. In this study, the amount of heat collected by season and time was calculated for photovoltaics thermal modules using the International Weather for Energy Calculations (IWEC) data provided by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). Based on this, we propose a method of predicting the temperature of the photovoltaics panel using thermal analysis and then calculating the flow rate of coolant to improve power generation efficiency. As the results, the photovoltaics efficiencies versus time on January, April, July, and October in Jeju of the Republic of Korea were calculated to the range of 15.06% to 17.83%, and the maxi-mum cooling load and flow rate for the photovoltaics thermal module were calculated to 121.16 W and 45 cc/min, respec-tively. Though this study, it could be concluded that the photovoltaics thermal system can be composed of up to 53 modules with targeting the Jeju, since the maximum capacity of the coolant circulation pump of the photovoltaics thermal system applied in this study is 2,400 cc/min.

Numerical Analysis on the Initial Cool-down Performance Inside an Automobile for the Evaluation of Passenger's Thermal Comfort (차량 내부 탑승자의 쾌적성 평가를 위한 초기 냉방운전 성능에 대한 수치해석적 연구)

  • Kim, Yoon-Kee;Yang, Jang-Sik;Baek, Je-Hyun;Kim, Kyung-Chun;Ji, Ho-Seong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.115-123
    • /
    • 2010
  • Cool-down performance after soaking is important because it affects passenger's thermal comfort. The cooling capacity of HVAC system determines initial cool down performance in most cases, the performance is also affected by location, and shape of panel vent, indoor seat arrangement. Therefore, optimal indoor designs are required in developing a new car. In this paper, initial cool down performance is predicted by CFD(computational fluid dynamics) analysis. Experimental time-averaging temperature data are used as inlet boundary condition. For more reliable analysis, real vehicle model and human FE model are used in grid generation procedure. Thermal and aerodynamic characteristics on re-circulation cool vent mode are investigated using CFX 12.0. Thermal comfort represented by PMV(predicted mean vote) is evaluated using acquired numerical data. Temperature and velocity fields show that flow in passenger's compartment after soaking is considerably unstable at the view point of thermodynamics. Volume-averaged temperature is decreased exponentially during overall cool down process. However, temperature monitored at different 16 spots in CFX-Solver shows local variation in head, chest, knee, foot. The cooling speed at the head and chest nearby panel vent are relatively faster than at the knee and foot. Horizontal temperature contour shows asymmetric distribution because of the location of exhaust vent. By evaluating the passenger's thermal comfort, slowest cooling region is found at the driver's seat.

Machine Learning Approach for Pattern Analysis of Energy Consumption in Factory (머신러닝 기법을 활용한 공장 에너지 사용량 데이터 분석)

  • Sung, Jong Hoon;Cho, Yeong Sik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.4
    • /
    • pp.87-92
    • /
    • 2019
  • This paper describes the pattern analysis for data of the factory energy consumption by using machine learning method. While usual statistical methods or approaches require specific equations to represent the physical characteristics of the plant, machine learning based approach uses historical data and calculate the result effectively. Although rule-based approach calculates energy usage with the physical equations, it is hard to identify the exact equations that represent the factory's characteristics and hidden variables affecting the results. Whereas the machine learning approach is relatively useful to find the relations quickly between the data. The factory has several components directly affecting to the electricity consumption which are machines, light, computers and indoor systems like HVAC (heating, ventilation and air conditioning). The energy loads from those components are generated in real-time and these data can be shown in time-series. The various sensors were installed in the factory to construct the database by collecting the energy usage data from the components. After preliminary statistical analysis for data mining, time-series clustering techniques are applied to extract the energy load pattern. This research can attributes to develop Factory Energy Management System (FEMS).

Importance-Performance Analysis of Operation of Specialized Complexes for Horticultural Production (원예전문생산단지 운영에 대한 중요도-만족도 분석)

  • Hong, Na-Kyoung;Rhee, Zae-Woong;Kim, Tae-Kyun
    • Current Research on Agriculture and Life Sciences
    • /
    • v.33 no.1
    • /
    • pp.25-31
    • /
    • 2015
  • This study investigated the operation criteria of specialized complexes for horticultural production reflecting the farmers' preferences. First, the analysis of the communal activity included six factors: the group purchase of consumables for common activity, group purchase of the greenhouse apparatus, cooperative seed raising, use of a common air conditioning and heating system, cooperative shipping, and soil examination and certification system. The results of the Importance-Performance analysis can be summarized as follows. The factors requiring good management included the group purchase of consumables for common activity, group purchase of the greenhouse apparatus, and cooperative shipping. The factors with a lower priority included cooperative seed raising and the use of a common air conditioning and heating system. While the importance of the soil examination and certification system was low, the satisfaction was high, so this factor needs to be managed to avoid overkill. Second, the analysis of information exchange and education included six factors: production technique information, greenhouse facility management information, distribution-related information, production technique education, greenhouse facility management education, and distribution-related education. The results of the Importance-Performance analysis can be summarized as follows. The factor of production technique education was the most important determinant, plus the factors requiring good management included production technique information, greenhouse facility management information, and distribution-related information. The factors with a lower priority included greenhouse facility management education and distribution-related education. Therefore, to enhance productivity through facility modernization, the scaling up and creation of more specialized horticulture complexes are recommended as policy measures to gain export competitiveness. As the Korean government is expected to expand the scale of specialized horticulture complexes, the results of this paper can be widely utilized.

Heat Storage Material by Using Phase Change Materials to Control Buildings Thermal Environment Characteristics (건축물 열환경 특성제어를 위한 상변화 축열재)

  • Yun, Huy-Kwan;Han, Seong-Kuk;Shim, Myeong-Jin;Ahn, Dae-Hyun;Lee, Woong-Mok;Park, Jong-Soon;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.522-526
    • /
    • 2010
  • Heat storage application techniques can be categorized into the sensible heat storage and the latent heat storage according to the method of heat storage. Heat storage is the way of saving remaining heat when heating and cooling loads are light, and then using it when the heating and cooling loads are heavy. Latent heat storage is defined as the method of saving heat by using substances which have high potential heat when phase change is in the range of a certain temperature and when heat storage space is small, compared to those of sensible heat storage and it is possible that absorption and emission of heat at a certain temperature. This study is conducted to save energy when either air-conditioning or heating is operated in a building. We have tried to find out the essential properties of matter and the optimum mixing rate about cement and gypsum for building materials, which have been widely used for proper phase change materials (PCM), when thermal environment property is applied. So we obtained the result of the cooling delay effect about 19% with heat storage mortar containing 3 wt% of PCM.

Compliance with GMP and SSOP in College Foodservices by Comparison of Elementary and Middle & High School Foodservices (초, 중.고등학교 급식소와의 비교를 통한 대학 급식소의 GMP 시설 구비 및 SSOP 수행도 조사)

  • Park, Soon-Hee;Moon, Hye-Kyung
    • Journal of the Korean Dietetic Association
    • /
    • v.18 no.3
    • /
    • pp.248-265
    • /
    • 2012
  • A total of 262 dietitians (in 97 college foodservices nationwide, 86 elementary school foodservices, and 79 middle & high school foodservices in the Changwon area) were given a survey questionnaire composed of 18 GMP and 29 SSOP items from May to July, 2011. As a whole, total usage level of GMP facilities (3.65/5 points) and total management level of SSOP (3.86) in college foodservices showed no significant differences compared to those in elementary school foodservices (GMP 3.74, SSOP 4.02) and middle & high school foodservices (GMP 3.75, SSOP 3.95). However, the results of this study suggest that seven items of the GMP facilities and five items of the SSOP should be improved for the development of the HACCP facility model in college foodservices. Those items that showed considerably lower points in GMP were as follows: 'Drain pipes from sinks of the cooking area are connected directly to the drain (3.74)' (P<0.001), 'The grease trap is installed outside the cooking area equipped with an oil separator (3.24)' (P<0.01), 'Entrance and the cooking area are adequately equipped with hand-washing and shoe disinfecting facilities (3.61)' (P<0.001), 'Cooking area, food storage, and dining area are adequately equipped with insect and rodent repellents (3.72)' (P<0.001), 'Cooking areas are equipped with air-conditioning/heating system and ventilation facility for maintenance of temperature and humidity (3.35)' (P<0.05), and 'Toilets for cooking staff only are provided; the its doorways are not directly accessible from the cooking area (3.25)' (P<0.01).

A Study on development of Resourse - saving site Planning techniques based on utilization of Ecosystem - Focused on Housing site - (생태계를 이용한 자원절약형 단지계획기법 개발에 관한 연구 - 주거단지를 중심으로-)

  • 이영무
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.18 no.2
    • /
    • pp.111-125
    • /
    • 1990
  • Korea is a nation with poor natural resources. There is a greats need to save resources that are running out in fast face. The purpose of this thesis is to bind the means to save rosources in housing site, especially in highrise apartment. The reason why the high-rise apartments are chosen as a case is 7hat the high-rise is becoming the major form of dwelling in most urban areas. As a tool of saving the ecological way is chosen because ecological energy is free, clean and unlimited. The resources to be saved are divided into two categories, namely energy and non - energy resources as water, land and food. The contents of the thesis are comprised of 4 chapters. The early chaspters are devoted to the understanding of the ecosystem and problems of current energy consumption in the apartment. It is fellowed by the introduction of the hypothesis that can possibly save reouruces. The hypothesis are then transformed into the actual theories through verification, to be established as the new techniques of the site planning. The ecosystem is the functional relationship between the living organisms and their physical surroundings. The living organisms are the plants that produce, animals that consume and bacterias that decompose. They live in the environment which consists of the three worlds of atmosphere, hydrosphere and lithosphere. The whole system is activated by the solar energy that turns the inorganic mallet- into the living organism and back to the inorganic. It is the recycling principle of the ecosystem. The elements of ecosystem that fan be unilimited as the tools of resources -saving are the sun, wind, water, soil, plant and waste. They are unlimited sources of energy. free of pollution and cheap in price. Each of these ecological elements Provide the opportunities that can save the heating fuel, air conditioning energy, water resource, land and food. The ecological approch should be pursued actively in this age of short resources and growing pollution. In the scale of total energy consumption the housing takes the second position next to the industrial use. It is followed by the transportation which shows for less consumption than former two.

  • PDF