• Title/Summary/Keyword: Air-conditioner indoor unit

Search Result 37, Processing Time 0.026 seconds

Development of a Conversion Unit converting the existing air conditioner to Heat Pump System for the Emergency Shelter (재해임시주거 냉난방을 위하여 기존 에어컨을 열펌프로 전환하는 변환기 개발)

  • Song, Heon
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.77-84
    • /
    • 2011
  • Korea and some other countries located in the northern hemisphere employ the air conditioner for the space cooling in the hot summer season and also some kinds of heaters for the space heating in the cold winter season. Especially in Korea, a great number of air conditioners of about 12,700,000 sets have been used these days. However, they are used for a short operation period of only 58 days a year, which results in the material and economic losses. To solve this problem and employ this system for the emergency shelter, a new conversion unit which could convert the existing air conditioner to a heat pump system for simultaneous heating and cooling was developed in this study, and the thermal performance was tested. The results indicated that the indoor air could be heated from $27^{\circ}C$ to $39^{\circ}C$ by the air conditioner converted to a heat pump system with the ambient temperature variation of $-10^{\circ}C{\sim}10^{\circ}C$, and cooled from $20^{\circ}C$ to $15^{\circ}C$ by the converted system with the ambient temperature variation of $20^{\circ}C{\sim}35^{\circ}C$. And also the heating COP increased from 3.3 to 5.3 in case of the heat exchange of the super cooling(HESC) circuit and from 3.0 to 4.0 in case of the By-pass with the ambient temperature variation of $-10^{\circ}C{\sim}10^{\circ}C$, respectively, whereas the cooling COP decreased from 3.1 to 2.1with the increase of the ambient temperature from $20^{\circ}C$ to $35^{\circ}C$.

Development of Simulation Program for Multi-Air conditioner (멀티에어컨의 성능해석 프로그램 개발)

  • Jeong, B.Y.;Koh, J.Y.;Park, B.D.;Yim, C.S.
    • Solar Energy
    • /
    • v.20 no.1
    • /
    • pp.63-72
    • /
    • 2000
  • In this study, theoretical simulation method for the steady state characteristics of a refrigeration cycle which consists of one condenser and multi-evaporator (Multi-air conditioner) is presented. The simulation was performed for a typical multi-air conditioning system consisted one outdoor unit with air-cooled condenser, compressor, linear electric expansion valve and bypass circuit and connected three-evaporators (three indoor units). The simulation results are good agreement with those of experiments within 5 $\sim$ 10% at the given system operation conditions which are condensing pressure, evaporating pressure, sub-cooled degree of condenser, superheated degree, discharge temperature of compressor and pulse of linear electric expansion valve.

  • PDF

Analyzing for Refrigerant Induced Noise for Split type Air Conditioner Indoor Unit (분리형 에어컨의 실내기 냉매 소음 저감 분석)

  • Han, Hyung-Suk;Aoyama, Shingeo;Mo, Jin-Yong;Lee, Jae-Kwon;Song, Yong-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.421-426
    • /
    • 2005
  • For the air-conditioner, refrigerant induced noise and vibration should be the problem when it reduced airflow rate in order to reduce the noise at low mode. With the test, it could be verified that one of the main reason for refrigerant induced noise were the velocity and flowing induced force of the refrigerant at the inlet of evaporator. So in order to reduce this velocity with same mass flow rate of refrigerant, quality at the evaporator inlet should be minimized. And in order to reduce flowing induced force of the refrigerant, flowing direction change should be eliminated. So in this paper, it would like to review the characteristics of refrigerating cycle at first and find how the quality and flowing induced force can be minimized.

  • PDF

Study on the Thermal Deformation of the Air-conditioner Indoor Unit Assembly Using 3D Measurement and Finite Element Analysis (에어컨 실내기 사출 조립품의 열 변형 3D측정과 유한요소해석)

  • Hong, Seokmoo;Hwang, Jihoon;Kim, Cheulgon;Eom, Seong-uk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.251-255
    • /
    • 2015
  • Thermal deformation, such as bending and twisting, occurs among the polymer parts of air-conditioner indoor units because of repetitive temperature change during heating operation. In this study, a numerical method employing finite-element analysis to efficiently simulate the thermal deformation of an assembly is proposed. Firstly, the displacement of an actual assembly produced by thermal deformation was measured using a 3D optical measurement system. The measurement results indicated a general downward sag of the assembly, and the maximum displacement value was approximately 1 mm. The temperature distribution was measured using a thermographic camera, and the results were used as initial-temperature boundary conditions to perform temperature-displacement analysis. The simulation results agreed well with the measured data. To reduce the thermal deformation, the stiffness increased 100%. As the results, the maximum displacement decreased by approximately 5.4% and the twisting deformation of the holder improved significantly.

Study on the Personal Air-Conditioning System Considering Human Thermal Adaptation (인간의 열적 적응성을 고려한 퍼스널 공조시스템의 개발)

  • 송두삼
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.524-532
    • /
    • 2003
  • In this paper, a personal air-conditioning system considering the human thermal adaptability is analyzed. Although the conventional personal air-conditioner was proofed to be satisfactory in providing for the thermal comfort, it is being questioned on the term of its energy efficiency. Therefore, it is important and urgent to develop new types of personal air-conditioning system with sustainable control strategy that can ensure energy saving and thermal comfort simultaneously. In this study, we first examined the problems of the conventional personal air-conditioning system with field interview and laboratory experiment in terms of usage, management and thermal comfort, and proposed the energy-saving personal air-conditioning system considering the human thermal adaptation. Then a laboratory experiment was performed to analyze the characteristics of the human thermal comfort under severe indoor thermal conditions, which were controlled using a new personal air-conditioning unit designed according to the proposal. The results help to illustrate the alleviation effect of the new personal air-conditioning system, and indicate that the thermal alleviation time is useful to maintain the thermal comfort with efficient usage of energy.

Design of Optimal Vane Control for Ceiling Type Indoor Unit by PIV measurements (천장형 실내기의 기류 가시화를 통한 최적 제어 설계)

  • Sung Jaeyong;An Kwang Hyup;Lee Gi Seop;Choi Ho Seon;Park Seung-Chul;Lee In-Seop
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.533-536
    • /
    • 2002
  • A heating flow discharged from a 4-way ceiling type indoor unit has been investigated using a PIV(particle image velocimetry) system For the PIV measurements, an experimental model of 1/10 scale with a transparent room was devised by satisfying the Archimedes number, which is generally used in case that the forced convection has the similar magnitude as the natural convection. To optimize the heating flow, several vane angles and vane control algorithms of cross and right angle controls were considered. Regarding the vane angle, the experimental results show that it should be less than $30^{\circ}$ to avoid re-suction flows which decrease the performance of the air-conditioner. At the vane angle of $30^{\circ}$, applying open/close control gives nae to more uniform distribution of the heating flow than without control. Especially, the cross-control seems to be satisfactory for the thermal comfort.

  • PDF

An Experimental Study for Noise Reduction of the Cross-Flow Fan of the Room Air-Conditioners

  • Koo, Hyoung-Mo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.89-100
    • /
    • 2000
  • Present study explains some experimental results on the aerodynamic noise of the cross-flow fan usually installed in the indoor unit of the room air-conditioners and provides a simple reduction method of radiating sound to decrease the total noise level. The spectra of the noise of the cross-flow fan were analyzed by the spectral decomposition method to characterize the generated sound. The unsteady fluctuating flow field was also measured using the I-type hot-wire probe. Comparing the spectral characteristics of the sound and the flow velocity, a useful noise reduction method was proposed, which bounds the region with a fence where the flow fluctuations were noticeably changed in the same fashion as the source spectral distribution functions vary. To validate the proposed method for reducing noise generated by the cross-flow fan, the sound pressure levels of the cross-flow fan system were compared with and without the bounding fence for various flow rates.

  • PDF

Analyzing for Refrigerant Induced Noise for Split Type Air Conditioner Indoor Unit (분리형 에어컨의 실내기 냉매 소음 저감 분석)

  • Aoyama Shigeo;Mo, Jin-Yong;Lee, Jae-Kwon;Song, Yong-Jae;Han, Hyung-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.240-246
    • /
    • 2006
  • In the air-conditioner, refrigerant induced noise and vibration can be increased when the airflow rate is reduced in order to decrease the noise at the low mode. Through the test and analysis of this kind of noise, it can be verified that the main reasons of refrigerant induced noise are the velocity and flow Induced force of the refrigerant at the inlet of the evaporator, So, in order to reduce this velocity, quality at the evaporator inlet should be minimized. And, in order to reduce flow induced force of the refrigerant, sudden change of fluid flow must not be occurred. So, in this paper, we will review the characteristics of refrigerant cycle and find how the quality and flow induced force can be minimized.

The Influence of the Intake Regions of the Cross-flow fan on the Performance and Fan Noise (횡류팬 흡입구의 위치가 성능 및 소음 특성에 미치는 영향)

  • Kim, Jin Baek;Choi, Weon Seok;Lee, Jai Kwon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.78-82
    • /
    • 2004
  • The cross-flow fan which is used for air-conditioner indoor units were studied experimentally. The recent trend shows that the room air-conditioners need to be good-looking. According to the visual design concepts the intake regions of the fan can vary, which leads to the loss of the performance and the increase of the noise of the fan. In order to optimize the performance of the fan and minimize the aerodynamic noise for the system, the performance characteristics and the noise of the cross-flow fan have been investigated at the various conditions of the intake region of the unit.

  • PDF

Study of the Assembly of Indoor Air-conditioner Unit Using Tolerance Analysis (공차해석을 이용한 에어컨 실내기의 조립성에 관한 연구)

  • Kim, Cheulgon;Hwang, Jihoon;Seo, Hyeongjoon;Mo, Jinyong;Jung, Duhan;Hong, Seokmoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.423-428
    • /
    • 2015
  • To identify locations and causes of interference among parts of an indoor air-conditioning unit, a 3D tolerance analysis was performed and optimized with respect to assembly gaps and the tolerance of each part. The maximum value of the defect rate resulting from the tolerance analysis was found to be 72.6 at the assembly portion of the body and drain. The maximum displacement caused by the thermal deformation during a heating operation was calculated to be approximately 1 mm by using finite element analysis (FEA). Therefore, it is possible that an interference among the assembled parts occurs. The tolerance of the drain was modified by the results of the sensitivity analysis. As a result, the defect rate was greatly reduced to 0.03. Through the FEA results of the indoor air-conditioning unit, it was shown that the improved tolerance of the drain decreased the interference among the assembled parts even though thermal deformation occurs during operation.