• Title/Summary/Keyword: Air-breathing propulsion system

Search Result 35, Processing Time 0.02 seconds

Current Technological Trends in Hypersonic Flight with Air-Breathing Propulsion System (차세대 극초음속 공기흡입식 추진기관의 개발 동향)

  • Lee, Yang-Ji;Kang, Sang-Hun;Yang, Soo-Seok
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.1
    • /
    • pp.43-55
    • /
    • 2009
  • Advanced countries in aerospace have been struggle to realize the hypersonic air-breathing system since originating the concept of the hypersonic air-breathing propulsion system during the first half of the twentieth century. At last, NASA's X-43A Hyper-X did successful Mach 10 flight in November 2004. Each countries are running the program to applicate this hypersonic air-breathing propulsion system to SSTO(Single Stage to Orbit) or TSTO(Two Stage to Orbit) vehicle or hypersonic missile system at present. In this paper, we wrote the history and current issues of the hypersonic air-breathing propulsion system and hypersonic flight with the hypersonic air-breathing propulsion system.

  • PDF

Integrated control of an air-breathing hypersonic vehicle considering the safety of propulsion system

  • Chengkun, Lv;Juntao, Chang;Lei, Dai
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • This paper investigates the integrated control of an air-breathing hypersonic vehicle considering the safety of propulsion system under acceleration. First, the vehicle/engine coupling model that contains a control-oriented vehicle model and a quasi-one-dimensional dual-mode scramjet model is established. Next, the coupling process of the integrated control system is introduced in detail. Based on the coupling model, the integrated control framework is studied and an integrated control system including acceleration command generator, vehicle attitude control loop and engine multivariable control loop is discussed. Then, the effectiveness and superiority of the integrated control system are verified through the comparison of normal case and limiting case of an air-breathing hypersonic scramjet coupling model. Finally, the main results show that under normal acceleration case and limiting acceleration case, the integrated control system can track the altitude and speed of the vehicle extremely well and adjust the angle deflection of elevator to offset the thrust moment to maintain the attitude stability of the vehicle, while assigning the two-stage fuel equivalent ratio to meet the thrust performance and safety margin of the engine. Meanwhile, the high-acceleration requirement of the air-breathing hypersonic vehicle makes the propulsion system operating closer to the extreme dangerous conditions. The above contents demonstrate that considering the propulsion system safety will make integrated control system more real and meaningful.

A Study on the Hypersonic Air-breathing Engine Ground Test Facility Composition and Characteristics (극초음속 공기흡입식 추진기관 지상 시험설비의 구성 및 특성에 관한 연구)

  • Lee, Yang-Ji;Kang, Sang-Hun;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.81-90
    • /
    • 2015
  • In order to know the characteristics of the hypersonic air-breahting engine, high altitude and Mach number ground test is necessary. Therefore, high pressure and high temperature condition should be simulated to do ground test of the hypersonic air-breathing engine. In this paper, the hypersonic air-breathing engine ground test facility of the Korea Aerospace Research Institute was introduced and the composition and characteristics were described.

Welding Process Development of the Air-breathing Propulsion System (공기흡입식 추진기관 용접 공정 개발)

  • Kang, In-Shik;Yang, Hae-Jin;Cho, Sung-Won;Han, Poong-Gyoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.391-392
    • /
    • 2009
  • In this paper, the sandwich panel structure and welding of titanium alloy applied to the air-breathing propulsion system are dealt. The welding machine with a jig&fixture is also dealt and technical trends on the process development are described.

  • PDF

Development of Fuel-Rich Propellant Using High Energy Metal Fuel (고에너지 금속 연료를 이용한 Fuel-Rich 추진제 개발)

  • Kim, Hye-Lim;Shin, Kyung-Hoon;Choi, Sung-Han;Lee, Won-Bok;Kim, Jun-Hyung;Ko, Seung-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.424-428
    • /
    • 2012
  • Air-breathing Propulsion System is one of the promising propulsion systems because of low cost, easy storage, compactness and simplicity. A study of gas generator propellant for air-breathing propulsion system was performed in this paper. Amorphous Boron Powder was applied in propellant with various kinds of additives to determine combustion characteristics. And boron beads were made to apply them to the propellant. Combustion characteristics of propellant using amorphous boron powder and boron beads was compared.

  • PDF

Model and component based modeling and simulation of a supersonic propulsion system (모델 및 구성품 기반 초음속 추진기관 실시간 모델링 및 시뮬레이션)

  • Choi, J.H.;Park, I.S.;Lee, J.Y.;Kim, J.H.;Kim, I.S.;Yoon, H.G.;Lim, J.S.;Kim, C.B.;Park, J.M.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.579-583
    • /
    • 2011
  • The component based propulsion modeling and simulation of an air-breathing engine such as ramjet and scramjet is studied. The simulation model has been realized considering the characteristics of the air-breathing engine which is composed of air intake, combustor and nozzle including engine controller and fuel supply system. To estimate the engine performance and to verify the engine controller, real time based Hardware in the Loop System simulating actual environment is constructed.

  • PDF

Analysis of Gross Thrust and Side Thrust of Air-Breathing Engine (공기 흡입 엔진의 총추력 및 측추력 분석)

  • Kim, Jeongwoo;Jung, Chihoon;Ahn, Dongchan;Lee, Kyujoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.572-582
    • /
    • 2017
  • It is definitely important to measure thrust during ground test when developing air-breathing engine, and in case of air-breathing engine, gross thrust should be calculated considering not only the measured thrust but also the force induced by the air flow of engine intake. Also, side thrust like yaw and pitch should be measured and analyzed using multi-component thrust measurement system. Engine performance was accurately evaluated by calculating the gross thrust of air breathing engine precisely which is analyzed from below serial procedure: labyrinth seal isolation, 1-axis gross thrust calculation, develop multi-component thrust measurement system, and side thrust analysis.

  • PDF

Air-Data Estimation for Air-Breathing Hypersonic Vehicles

  • Kang, Bryan-Heejin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.75-86
    • /
    • 1999
  • An air-data estimator for generic air-breathing hypersonic vehicles (AHSVs) is developed and demonstrated with an example vehicle configuration. The AHSV air-data estimation strategy emphasized improvement of the angle of attack estimate accuracy to a degree necessitated by the stringent operational requirements of the air-breathing propulsion. the resulting estimation problem involves highly nonlinear diffusion process (propagation); consequently, significant distortion of a posteriori conditional density is suspected. A simulation based statistical analysis tool is developed to characterize the nonlinear diffusion process. The statistical analysis results indicate that the diffusion process preserves the symmetry and unimodality of initial probability density shape state variables, and provide the basis for applicability of an Extended Kalman Filter (EKF). An EKF is designed for the AHSV air-data system and the air data estimation capabilities are demonstrated.

  • PDF

Introduction to the Propulsion Systems for the Next Generation Flight Vehicles (차세대 비행체 추진기관 시스템 소개)

  • 이대성;양수석;차봉준;한영민;김춘택
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.74-82
    • /
    • 2000
  • The concept and characteristics of the propulsion systems for the next generation flight vehicles are described in this paper, where Hey are grouped into air breathing engine, rocket engine and combined cycle engine according to the feeding system of oxidizer. Air breathing engine has its good reusability and superior performance at low altitude, but its usage is limited at high altitude due to the decreased air density. Rocket engine can be used over the wide range of altitude, but it has disadvantages in low specific impulse and high cost. The several types of combined cycle engine, which are being developed by the leading countries in the aerospace, are highlighted as a remarkable candidate for the next generation propulsion system.

  • PDF

The Gross Thrust Estimation Technique of Air-Breathing Engine (공기 흡입 엔진의 총추력 추정 기법)

  • Kim, Jeongwoo;Jung, Chihoon;Ahn, Dongchan;Lee, Kyujoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.97-108
    • /
    • 2018
  • It is definitely important to measure thrust during ground test when developing air-breathing engine, and in case of air-breathing engine, gross thrust should be calculated considering not only the measured thrust but also the force induced by the air flow of engine intake. Also, side thrust like yaw and pitch should be measured and analyzed using multi-component thrust measurement system. Engine performance was accurately evaluated by calculating the gross thrust of air breathing engine precisely which is analyzed from below serial procedure: labyrinth seal isolation, 1-axis gross thrust calculation, develop multi-component thrust measurement system, and side thrust analysis.