• Title/Summary/Keyword: Air-borne infection

Search Result 7, Processing Time 0.013 seconds

Comparative Evaluation of Measures against the Spread of Air-borne Infections in a Large National Hospital and Small and Medium-sized Clinics in Korea (국내 대형병원과 중·소규모 의원의 공기감염 확산 방지 대책의 비교 평가)

  • An, Jiwon;Yang, Young Kwon;Won, An-Na;Hwang, Jung Ha;Park, Jin Chul
    • Journal of Korean Living Environment System
    • /
    • v.25 no.1
    • /
    • pp.90-97
    • /
    • 2018
  • The purpose of this study is to compare and analyze the air infections in middle and small hospitals with the facilities of large national hospitals that have air-borne infection isolation (AII) wards through actual condition investigation and airflow analysis simulation (CFD) and to provide basic data for prevention. The method and scope of the study are as follows. First, through literature review, data related to prevention of infection spread in domestic medical institutions were investigated. Second, we conducted a survey on the status of isolation facilities to prevent the spread of infectious diseases in large hospitals and small and medium - sized clinics in Korea. Third, airflow analysis simulation (CFD) was carried out using the isolation ward of the nationally designated inpatient ward and the data of the plane and facility system of the small clinic. As a result of the study, it is found that regulations applicable to small and medium-sized clinics are insufficient. In addition, the simulation results show that the infectious disease virus is likely to spread to other patients in the hospital.

Forecasting the Pepper Gray Mold Rot to Predict the Initial Infection by Botrytis cinerea in Greenhouse Conditions

  • Park, Seon-Hee;Lee, Joon-Taek;Chung, Sung-Ok;Kim, Hee-Kyu
    • The Plant Pathology Journal
    • /
    • v.15 no.4
    • /
    • pp.158-161
    • /
    • 1999
  • We determined threshold environmental factros to initiate infection of pepper plants by Botrytis cinerea, a fungal pathogen of pepper gray mold, in two greenhouse conditions. A new efficient spore-trapping method was developed to estimate population density of airborne conidia in the greenhouses, and spore release was measured using a Kerssies' selective medium. At a given day, spores were released greater during daytime (mostly from 7:30 am to 10:30 am and at 4:30 pm) than nighttime. Diurnal and nocturnal temperatures in the greenhouse-1 were about $25^{\circ}$ and $17^{\circ}$,and relative humidity was 100% for prolonged 24 h due to rain on December 17, 1997. Population density of air-borne conidia was 3.0$\times$103 conidia/ $0.5\textrm{m}^3$ after two days, and the initial infection occurred in ten days. During the same period of time in the greenhouse-2, diurnal temperature was about $25^{\circ}$ and nocturnal temperature was below $15^{\circ}$, and population density of air-borne conidia was 104 conidia/ $0.5\textrm{m}^3$. Under these conditions, the initial infection started in three days. This indicates that the early infection occurs under which diurnal temperature is approximately $25^{\circ}$, nocturnal temperature is maintained below $15^{\circ}$, and population density of air-borne conidia is 104 conidia/ $0.5\textrm{m}^3$ at saturated relative humidity condition.

  • PDF

Optimization of monitoring methods for air-borne bacteria in the environmental conditions of pig facilities (무균 돈사 환경 모니터링을 위한 대기 중 미생물 탐지기법 확립)

  • Lee, Deok-Yong;Seo, Yeon-Soo;Kang, Sang-Gyun;Yoo, Han Sang
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.3
    • /
    • pp.255-261
    • /
    • 2006
  • Experimental animals have been used to biological and medical purposes and the animals must be, for these purposes, healthy and clean to microbial infection. However, the animals can be easily exposed to pathogenic microorganism via several routes. Of the routes, environmental conditions are the most important factors to keep the animals healthy and clean, especially air condition. Monitoring of air-condition has been required to keep the animal healthy and clean. However, any guideline is not available for experimental conditions with pigs. Therefore, the sampling times and points were compared in different conditions to establish an optimal protocol for monitoring of air borne bacteria. Tryptic soy agar(TSA), blood agar containing 5% defibrinated sheep blood and Sabraud dextrose agar(SDA) were used as media to capture total bacteria, pathogenic bacteria and fungi, respectively. Two methods, compulsive capture using an air-sampler and capturing fall-down bacteria were used to capture the microorganisms in the air. The points and time of capturing were different at each experiment. Air borne microorganisms were captured at three and five points in the open and closed equipments, respectively. Air was collected using an air-sampler for 1 min and 5 min and the agar plates as open status were left from 30 min to 2hr. At first, we monitored an experimental laboratory which dealt with several pathogenic bacteria and then, a protocol obtained from the investigation was applied to open or close experimental conditions with pigs. Number of bacteria was high from 10:00 to 15:00, especially on 13:30-15:30 but sharply decreased after 17:00. The tendency of the number of bacteria was similar between two methods even though the absolute number was higher with air sampler. Critical difference in the number of cells was observed at 5 min with air sampler and 2 hr with fall-down capturing method. However, 1 min with air sampler and 1 hr with fall-down capturing were the best condition to identify bacterial species collected from the air. Number of bacteria were different depending on the sampling points in closed condition but not in opened condition. Based on our results, a guide-line was suggested for screening air-borne microorganism in the experimental conditions with pigs.

Seed-borne Pathogenic Bacterium Interact with Air-borne Plant Pathogenic Fungus in Rice Fields

  • Jung, Boknam;Park, Jungwook;Kim, Namgyu;Li, Taiying;Kim, Soyeon;Bartley, Laura E.;Kim, Jinnyun;Kim, Inyoung;Kang, Yoonhee;Yun, Ki-Hoon;Choi, Younghae;Lee, Hyun-Hee;Lee, Kwang Sik;Kim, Bo Yeon;Shon, Jong Cheol;Kim, Won Cheol;Liu, Kwang-Hyeon;Yoon, Dahye;Kim, Suhkman;Ji, Sungyeon;Seo, Young Su;Lee, Jungkwan
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.33-33
    • /
    • 2018
  • Air-borne plant pathogenic fungus Fusarium graminearum and seed-borne plant pathogenic bacterium Burkholderia glumae are cause similar disease symptoms in rice heads. Here we showed that two pathogens frequently co-isolated in rice heads and F. graminearum is resistant to toxoflavin produced by B. glumae while other fungal genera are sensitive to the toxin. We have tried to clarify the resistant mechanism of F. graminearum against toxoflavin and the ecological reason of co-existence of the two pathogens in rice. We found that F. graminearum carries resistance to toxoflavin as accumulating lipid in fungal cells. Co-cultivation of two pathogens resulted in increased conidia and enhanced chemical attraction and attachment of the bacterial cells to the fungal conidia. Bacteria physically attached to fungal conidia, which protected bacterium cells from UV light and allowed disease dispersal. Chemotaxis analysis showed that bacterial cells moved toward the fungal exudation compared to a control. Even enhanced the production of phytotoxic trichothecene by the fungal under presence of toxoflavin and disease severity on rice heads was significantly increased by co-inoculation rather than single inoculation. This study suggested that the undisclosed potentiality of air-born infection of bacteria using the fungal spores for survival and dispersal.

  • PDF

The emergency patients analysis of 1339 Emergency Medical Information Center received during the holidays - New Year's Day & Thanksgiving Day of Gwangju & Jeonnam region in 2007 - (연휴동안 1339 응급의료정보센터에 접수된 응급환자 현황 분석 - 광주·전남지역의 2007년 구정과 추석을 중심으로 -)

  • Park, Si-Goo;Park, Hee-Jin
    • The Korean Journal of Emergency Medical Services
    • /
    • v.12 no.1
    • /
    • pp.69-80
    • /
    • 2008
  • During New year's day and Thanksgiving holiday, the 1339 Information Center in Gwangju and Jeonnam received an emergency medical situation and carried out the analysis as follows ; 1. The reason for the higher phone guidance(72%) of the hospital was based on the simple query for the pain control rather than emergency care. This was explained by the unfamiliar environment of the holiday movers. Pharmaceutical guidance(12.6%) in rural area was also given during the holidays. 2. The disease counselling(2.4%) and emergency treatment instruction(First Aid)(1.6%) decreased because of the small number of request for the diseases. This explained the decrease of the disease counselling. 3. The phone calls increased 8-13 times more than usual. Five-day holidays could have more emergency patients than three-day holidays. During New year's day and Thanksgiving day, the number of received phone calls was 6,444(25.7%) and this accounted for one fourth of the total number in 2007. 4. The number of the patients increased on New year's day and Thanksgiving day because most of the medical institutions and pharmacy were off duty. 5. The patients were centered in Internal medicine and pediatrics. This showed the food-borne diseases and air-borne infection such as common cold. 6. During Thanksgiving day, ophthalmologic patients having viral keratoconjunctivitis(Apollo eye disease) increased 8 folds than in New year's day. It was estimated from the continuous epidemic of Apollo eye disease. 7. There broke out the traffic accidents, food poisoning, infectious diseases, dermatological diseases due to seasonal and environmental changes during the holiday move.

  • PDF

An Empirical Model for Forecasting Alternaria Leaf Spot in Apple (사과 점무늬낙엽병(斑點落葉病)예찰을 위한 한 경험적 모델)

  • Kim, Choong-Hoe;Cho, Won-Dae;Kim, Seung-Chul
    • Korean journal of applied entomology
    • /
    • v.25 no.4 s.69
    • /
    • pp.221-228
    • /
    • 1986
  • An empirical model to predict initial disease occurrence and subsequent progress of Alternaria leaf spot was constructed based on the modified degree day temperature and frequency of rainfall in three years field experiments. Climatic factors were analized 10-day bases, beginning April 20 to the end of August, and were used as variables for model construction. Cumulative degree portion (CDP) that is over $10^{\circ}C$ in the daily average temperature was used as a parameter to determine the relationship between temperature and initial disease occurrence. Around one hundred and sixty of CDP was needed to initiate disease incidence. This value was considered as temperature threshhold. After reaching 160 CDP, time of initial occurrence was determined by frequency of rainfall. At least four times of rainfall were necessary to be accumulated for initial occurrence of the disease after passing temperature threshhold. Disease progress after initial incidence generally followed the pattern of frequency of rainfall accumulated in those periods. Apparent infection rate (r) in the general differential equation dx/dt=xr(1-x) for individual epidemics when x is disease proportion and t is time, was a linear function of accumulation rate of rainfall frequency (Rc) and was able to be directly estimated based on the equation r=1.06Rc-0.11($R^2=0.993$). Disease severity (x) after t time could be predicted using exponential equation $[x/(1-x)]=[x_0/(1-x)]e^{(b_0+b_1R_c)t}$ derived from the differential equation, when $x_0$ is initial disease, $b_0\;and\;b_1$ are constants. There was a significant linear relationship between disease progress and cumulative number of air-borne conidia of Alternaria mali. When the cumulative number of air-borne conidia was used as an independent variable to predict disease severity, accuracy of prediction was poor with $R^2=0.3328$.

  • PDF