• Title/Summary/Keyword: Air-Water

Search Result 6,822, Processing Time 0.041 seconds

Review of Problems with Use of Halogenated Cleaning Solvents Revealed through Case Studies of Cleaning Solvent Poisoning and Analysis of Domestic and Overseas Regulations (세척제 용매 중독 사례와 국내·외 규제 검토를 통한 할로겐화 용매 세척제 사용의 문제점 고찰)

  • Naroo Lee;Hye Jin Lee;Sujin Jeong;Dohee Lee;Arom Shin
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.4
    • /
    • pp.517-527
    • /
    • 2023
  • Objectives: We examine cases of chemical poisoning that occurred in the cleaning of metal parts and the regulations on halogenated solvents in other countries and propose regulations necessary to prevent chemical poisoning from halogenated solvents. Methods: We collected cases of chemical poisoning through the website of the Korea Occupational Safety and Health Agency. A review of the literature was conducted focusing on regulations related to halogenated solvents in the United States and the European Union, particularly for cleaning metal parts. Among the Material Safety Data Sheets submitted to the government, MSDS containing eleven substances were extracted to confirm the composition and product use. We investigated cleaning methods for metal parts used in South Korea. For the hazard classification, the European Chemicals Agency or Japan's NITE's website was used. Results: In the case of poisoning, the cleaning methods involving trichloromethane were dipping and dry, which was not found in the literature. It was confirmed that many halogenated solvents and dimethyl carbonate were used for metal cleaning in South Korea. In vapor degreasing using TCE in the USA, even if the facility is strictly managed, such as by installing cooling coils in open cleaning facilities, the risk of exposure to TCE is considered to be not only carcinogenic but also a concern for acute and chronic effects. In comparison, exposure through Korean work methods such as dipping and drying operations is inevitably much higher. Conclusions: The transition to water-based cleaning with low-hazard chemicals should be a priority in the cleaning process. In the case of metal parts that require precise cleaning, if the use of a halogenated solvent is inevitable, a closed degreasing facility should be used to minimize exposure. The current regulations in the Occupational Safety and Health Act, the Chemical Substances Control Act, and the Air Environment Conservation Act do not require cleaning facilities to minimize emissions. To protect the health of workers using halogenated solvents to clean metal parts, regulations that require a fundamental reduction in exposure will be necessary.

Exergetic Analysis of Ammonia-fueled Solid Oxide Fuel Cell Systems for Power Generation (암모니아 활용 고체산화물 연료전지 발전시스템의 엑서지 분석)

  • Thai-Quyen Quach;Young Gyun Bae;Kook Young Ahn;Sun Youp Lee;Young Sang Kim
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.27-34
    • /
    • 2023
  • Using ammonia as fuel for solid oxide fuel (SOFC) cells has become an attractive topic nowadays due to its high efficiency, environmental friendliness, and ease of storage and transportation. Several configurations of ammonia-fed SOFC systems have been proposed and investigated, demonstrating high electrical efficiency. However, to further enhance efficiency, it is crucial to understand the inefficient components of the system. The exergy concept is well-suited for this purpose, making exergetic analysis essential for ammonia-fed SOFC systems. This study conducts an exergetic analysis for three selected systems: a simple fuel cell system (FC), an anode off-gas recirculation system (RC-FC), and a recirculation system with water removal (RC-WR-FC). The results reveal that the exergetic efficiencies of the FC, RC-FC, and RC-WR-FC are 48.7%, 51.6%, and 58.4%, respectively. In all three systems, the SOFC stack is the main source of exergy destruction. However, other components with relatively low exergetic efficiency, such as the burner, air heat exchanger, and cooler/condenser, offer greater opportunities for improvement.

Evaluation of Applicability for 3D Scanning of Abandoned or Flooded Mine Sites Using Unmanned Mobility (무인 이동체를 이용한 폐광산 갱도 및 수몰 갱도의 3차원 형상화 위한 적용성 평가)

  • Soolo Kim;Gwan-in Bak;Sang-Wook Kim;Seung-han Baek
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • An image-reconstruction technology, involving the deployment of an unmanned mobility equipped with high-speed LiDAR (Light Detection And Ranging) has been proposed to reconstruct the shape of abandoned mine. Unmanned mobility operation is remarkably useful in abandoned mines fraught with operational difficulties including, but not limited to, obstacles, sludge, underwater and narrow tunnel with the diameter of 1.5 m or more. For cases of real abandoned mines, quadruped robots, quadcopter drones and underwater drones are respectively deployed on land, air, and water-filled sites. In addition to the advantage of scanning the abandoned mines with 2D solid-state lidar sensors, rotation of radiation at an inclination angle offers an increased efficiency for simultaneous reconstruction of mineshaft shapes and detecting obstacles. Sensor and robot posture were used for computing rotation matrices that helped compute geographical coordinates of the solid-state lidar data. Next, the quadruped robot scanned the actual site to reconstruct tunnel shape. Lastly, the optimal elements necessary to increase utility in actual fields were found and proposed.

Analysis on Study Cases of Safety Assessment and Cases for Spent Nuclear Fuel Pool Accident (사용후핵연료 습식저장시설 사고 안전성 평가 연구 현황 및 사고 사례 분석)

  • Shin Dong Lee;Hyeok Jae Kim;Geon Woo Son;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.3
    • /
    • pp.283-292
    • /
    • 2023
  • Spent nuclear fuel corresponds to high-level radioactive waste that has high decay heat and radioactivity. Accordingly, Spent nuclear fuel withdrawn from the reactor core is primarily stored and managed in a spent nuclear fuel pool in the nuclear power plant to reduce decay heat and radioactivity. In Korea, most nuclear power plant store all spent nuclear fuel in a spent nuclear fuel pool. For wet storage, there are no defense in depth different with reactor core. The study related to spent nuclear fuel pool accident should be carried out to ensure safety. Therefore, it is necessary to analyze previous study cases related to safety of spent nuclear fuel pool and accident cases to build foundational knowledge. The Objective of this study is to analyze study cases of safety assessment and cases for spent nuclear fuel pool accident. For analyzing study cases of safety assessment, possible phenomena when spent nuclear fuel pool accident occurring identified, Subsequently, study cases for safety assessment about each phenomena were investigated, and materials & methods and results for each study are analyzed. For analyzing cases for spent nuclear fuel pool accident, we analyzed accident cases caused by loss of cooling and loss of coolant in spent nuclear fuel pool. Subsequently, causes and change of water level and temperature by each accident case are analyzed. As a result of the analysis on study cases of spent nuclear fuel pool accident, the results of the study conducted by each research institute were vary depending on the computer code, materials & methods of experiment and major assumptions used in the study. As a result of analyzing cases for spent nuclear fuel pool accident, it was found that accident cases for loss of cooling is more than cases for loss of coolant accident. Even though the types of accident in spent nuclear fuel pool were similar, the specific causes were different by each accident case. All the accident cases analyzed did not lead to severe accidents, such as nuclear fuel being exposed to the air. The result of this study will be used as fundamental data for study on spent nuclear fuel pool accident that will be conducted in the future.

Studies on the Germination Characteristics of Sesame (Sesamum indicum L.) (참깨의 발아특성(發芽特性)에 관(關)한 연구(硏究))

  • Kim, Choong Soo
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.1
    • /
    • pp.28-60
    • /
    • 1983
  • This study was carried out to define the effects of external factors including temperature, moisture, oxygen and light quality on the germination of sesame seeds and to investigate the change of major chemical constituents of seeds during germination. The results obtained are summarized as follows: 1. The average germination ratio was from 95.8% to 97.2% when it was tested every $5^{\circ}C$ intervals from $20^{\circ}C$ to $35^{\circ}C$ and no significant difference in germination ratio was found within $20^{\circ}C$ to $35^{\circ}C$. But the germination ratio dropped rapidly to 32.2% when seeds were germinated at $15^{\circ}C$ and the coefficient of variation become greater(77%) 2. The days required for germination ranged from 1.16 to 1. 64 at the temperatures of $35^{\circ}C$ to $25^{\circ}C$ and they were 3.07 and 10.4 at the temperatures of $20^{\circ}C$ and $15^{\circ}C$, respectively. 3. Considering the germination ratio and days needed, $15^{\circ}C$ was assumed to be the minimum temperature for germination practically and this temperature is recommended for testing low temperature tolerance of seed germination of sesame cultivars. 4. The varieties shown the highest low temperature tolerance were Shirogoma and Turkey. The next varieties shown some degree of low temperature germination were Suweon #29, Naebok and IS 58. The varieties with 70 to 80% of germination ratio were Maepo, Suweon #14, Kimpo, Moondeok, and Haenam. Among the 90 varieties tested, the varieties with comparatively high degree of low temperature tolerance were about 10%, and 70% of the low temperature tolerant varieties were domestic varieties. 5. At $12^{\circ}C$ the Shirogoma was the only variety which showed over 50% of germination ratio, 71.4% of the varieties showed less than 20% of germination ratio. When the temperature was raised to $27^{\circ}C$ 18 days after placement at $12^{\circ}C$ all the varieties showed over 90% of germination ratio within 2days. 6. The amounts of water imbibition needed for seed germination were 0.48 to 0.62 times of the seed dry weight at $25^{\circ}C$ and were significantly different among sesame cultivars. About 63% of water required for germination was imbibed in 2 hours after placement of seeds under the germination condition. 7. Under saturated moisture condition the average germination ratio was 0.42%. In the soil of which water potential was -0.4bar 64.8% of the seeds germinated and the most adequate soil water potential for sesame seed germination was about -0.4 to -5.5 bar. The germination ratio decreased as the soil water potential declined below -5.5 bar. 8. Six out of 10 varieties were not influenced by 5% of oxygen in air germination chamber, while varieties such as Yecheon, PI 158073, IS 103 and Euisangcheon showed 64 to 91% of germination under the 5% oxygen content. Under anaerobic condition, cotyledones were not emerged but only hypocotyl was emerged and elongated. The germination ratio of IS 103 decreased significantly under anaerobic condition. 9. When the seeds were dried for 24 hours after 12 hours imbibition of water, the seeds of Cheongsong did not lose their germination ability and 27.5% was germinated but Suweon #9 and Early Russian failed to germinate. However, the germination ratio of IS 103 decreased when the seed were dried 24 hours after 4 hours imbibition of water and the germination ability of IS 103 was maintained even though the seeds were dried for 24 hours after 24 hours imbibition of water. 10. During germination, sugar content of sesame seed increased rapidly and activity of ${\alpha}$-amylase increased gradually while starch content decreased significantly. The rates of increase in sugar content and enzyme activity and decrease in starch content were significantly lower at $15^{\circ}C$ compared with those at $25^{\circ}C$. 11. During germination of sesame seeds, lipid content in the seeds dropped rapidly and the activity of alkaline lipase increased significantly at early stage of germination. The rate of decrease in lipid content and increase in emzyme activity was lower at $15^{\circ}C$ than at $25^{\circ}C$. 12. Four out of 6 varieties were not affected in germination by light wave length. But Suweon #8 was inhibited in germination by 600-650nm. and IS 103 by 600 to 650nm and 500 to 550nm of light wave length. Suweon #8 showed high germination ratio under 650 to 760 nm and 500 to 560nm, and IS 103 under 400 to 470nm and complete darkness. 13. The germination ratios increased significantly in the seeds of which 1000 grain weight is heavier. When the seeds were placed at soil 4cm deep, Cheongsong and Early Russian failed to emerge their cotyledones, but Suweon #9 and IS 103 showed 32.5 and 50% cotyledone emergence, respectively. The extracts from sesame plant and soil where the sesame was cultivated previously did not affect in the-germination of sesame seeds. 14. The covering by black or transparent polyethylene films increased germination ratio compared with uncovered seeds. The covering was effective in shortening the days needed for germination and in improving the early seedling growth, number of capsules per plant and grain yield. Difference was not so seizable between the two polyethylene films but the transparent film appeared somewhat more effective than the black one. 15. Simcheon, Cheongsong. Suweon #9. PI 158073 and IS 103 showed lower rate of water absorbtion by seed during germination and Suweon #8, Suweon #26, Orotall and Euisangcheon showed high increase in seed weight after water absorbtion by seed.

  • PDF

Processing Factor of Matrine in Chilli Pepper (홍고추 중 matrine의 가공계수)

  • Noh, Hyun Ho;Lee, Jae Yun;Kim, Jin Chan;Jeong, Oh Seok;Kim, Hye Sung;Lee, Yong Hun;Choi, Ji Hee;Om, Ae Son;Hong, Su Myeong;Paik, Min Kyoung;Kim, Doo Ho;Kyung, Kee Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.244-248
    • /
    • 2013
  • This study was carried out to investigate the residual characteristics and calculate processing factor of the environment friendly material matrine in fresh chilli pepper by drying. Spray solution of matrine was prepared by dilution of the commercial product (2% active ingredient) with water at 1 : 1000 (v/v) ratio and sprayed onto chilli pepper plants at seven day intervals. Samples were collected at 0, 1, 3, 5 and 7 days after last application and then dried using a hot air dry oven at $60^{\circ}C$ for 36 hours until the water content was reduced to 14%. Recoveries and storage period stabilities of matrine in the samples ranged from 106.6 to 119.1% and 106.6 to 113.1%, respectively. The residual concentrations of matrine in fresh chilli pepper and dried chilli peppers treated only once were found to be from less than 0.01 to 0.11 and from 0.03 to 0.25 mg/kg, respectively. In case of plants sprayed twice with matrine, the residual concentrations ranged from 0.02 to 0.12 and from 0.04 to 0.4 mg/kg, respectively. Processing factor of matrine in the fresh chilli pepper by drying was found to be from 1.5 to 3.3, indicating that the residual concentration of matrine in dried chilli pepper increased about two or three times by drying.

Assessment of the Functions of Vegetation and Soil on the Nutrient Cycling in Paddy Field Ecosystem with Inflow of Animal Wastes (빗물에 의해 축산폐수가 유입되는 논 생태계에서 영양물질 순환에 미치는 토양과 식생의 영향평가)

  • Ahn, Yoon-Soo;Kang, Kee-Kyung;Kim, Sae-Geun;Roh, Kee-An;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.162-169
    • /
    • 1998
  • This study was carried out to assess the roles of soil and vegetation on the nutrient cycling in paddy ecosystem where excessive amounts of animal wastes were flowed in due to the rain. Experimental sites included one abandoned and four cropping paddy fields which were moderately terraced under a small farm village raising 90 milk cows and 35 deer under open-air condition. The watershed covered 4 ha with every 50% of uptown and fodder crops. Concentrations of $NH_4-N$ and $P_2O_5$ in waste water flowed into the abandoned paddy field, enforced by the rain of $56.4mm\;day^{-1}$, were $8.3mg\;{\ell}^{-1}$ and $1.8mg\;{\ell}^{-1}$, respectively. Total mass of rainfall inflow to abandoned field during rice growing period (1 May to 30 Sept.) was $20,900Mg\;ha^{-1}$. Total amounts of $NH_4-N$ and $P_2O_5$ contained in that inflow were estimated as 173 kg and 38 kg, respectively. Concentrations in the outflow water through one abandoned and four rice paddy fields were reduced by 92% for $NH_4-N$ and 95% for $P_2O_5$, as compared to those in the inflows. The reserved portions of nutrients in the abandoned paddy field ecosystem, which were the summation of the uptake by weed and residues in soil, were 29% of the inflow amount for $NH_4-N$ and 30% for $P_2O_5$. These results demonstrated that soil and vegetation in paddy field ecosystem reduced the excessive nutrients from the animal waste inflow to the extents that might be suitable not only for the better growth of rice plant, located at the lower paddy fields, but also for preservation of the downstream from eutrophication.

  • PDF

Separation of Ferrous Materials from Municipal Solid waste Incineration Bottom Ash (생활폐기물(生活廢棄物) 소각(燒却) 바닥재의 자력선별(磁力選別)에 따른 ferrous material의 분리(分離) 특성(特性))

  • Um, Nam-Il;Han, Gi-Chun;You, Kwang-Suk;Cho, Hee-Chan;Ahn, Ji-Whan
    • Resources Recycling
    • /
    • v.16 no.3 s.77
    • /
    • pp.19-26
    • /
    • 2007
  • The bottom ash of municipal solid waste incineration generated during incineration of municipal solid waste in metropolitan area consists of ceramics, glasses, ferrous materials, combustible materials and food waste and so on. Although the ferrous material was separated by the magnetic separation before the incineration process, of which content accounts for about $3{\sim}11%$ in bottom ash. The formation of a $Fe_3O_4-Fe_2O_3$ double layer(similar to pure Fe) on the iron surface was found during air-annealing in the incinerator at $1000^{\circ}C$. A strong thermal shock, such as that takes place during water-cooling of bottom ash, leads to the breakdown of this oxidation layer, facilitating the degradation of ferrous metals and the formation of corrosion products and it existed as $Fe_2O_3,\;Fe_3O_4\;and\;FeS_2$. So, many problems could occur in the use of bottom ash as an aggregate substitutes in construction field. Therefore, in this study, the separation of ferrous materials from municipal solid waste incineration bottom ash was investigated. In the result, the ferrous product(such as $Fe_2O_3,\;Fe_3O_4,\;FeS_2$ and iron) by magnetic separator at 3800 gauss per total bottom ash(w/w.%) accounted for about 18.7%, and 87.7% of the ferrous product was in the size over 1.18 mm. Also the iron per total bottom ash accounted for about 3.8% and the majority of it was in the size over 1.18 mm.

A Study on Chemical Composition of Fine Particles in the Sungdong Area, Seoul, Korea (서울 성동구 지역 미세먼지의 화학적 조성에 관한 연구)

  • 조용성;이홍석;김윤신;이종태;박진수
    • Journal of Environmental Science International
    • /
    • v.12 no.6
    • /
    • pp.665-676
    • /
    • 2003
  • To investigate the chemical characteristics of PM$\_$2.5/ in Seoul, Korea, atmospheric particulate matters were collected using a PM$\_$10/ dichotomous sampler including PM$\_$10/ and PM$\_$2.5/ inlet during the period of October 2000 to September 2001. The Inductively Coupled Plasma-Mass Spectromety (ICP-MS), ion Chromatography (IC) methods were used to determine the concentration of both metal and ionic species. A statistical analysis was performed for the heavy metals data set using a principal component analysis (PCA) to derived important factors inherent in the interactions among the variables. The mean concentrations of ambient PM$\_$2.5/ and PM/sub10/ were 24.47 and 45.27 $\mu\textrm{g}$/㎥, respectively. PM$\_$2.5/ masses also showed temporal variations both yearly and seasonally. The ratios of PM$\_$2.5/PM$\_$10/ was 0.54, which similar to the value of 0.60 in North America. Soil-related chemical components (such as Al, Ca, Fe, Si, and Mn) were abundant in PM$\_$10/, while anthropogenic components (such as As, Cd, Cr, V, Zn and Pb) were abundant in PM2s. Total water soluble ions constituted 30∼50 % of PM$\_$2.5/ mass, and sulfate, nitrate and ammonium were main components in water soluble ions. Reactive farms of NH$_4$$\^$+/were considered as NH$_4$NO$_3$ and (NH$_4$)$_2$SO$_4$ during the sampling periods. In the results of PCA for PM$\_$2.5/, we identified three principal components. Major contribution to PM$\_$2.5/ seemed to be soil, oil combustion, unidentified source. Further study, the detailed interpretation of these data will need efforts in order to identify emission sources.

Growth and Physiological Characteristics of Pinus densiflora Seedlings in Response to Open-field Experimental Warming using the Infrared Lamp (적외선등을 이용한 실외 실험적 온난화 처리가 소나무 묘목의 생장과 생리적 특성에 미치는 영향)

  • Lee, Sun Jeoung;Han, Saerom;Yoon, Tae Kyung;Han, Seung Hyun;Jung, Yejee;Yun, Soon Jin;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.522-529
    • /
    • 2013
  • Climate change will affect the physiological traits and growth of forest trees. This study was conducted to investigate the effects of an experimental warming on growth and physiological characteristics of Pinus densiflora S. et Z. seedlings. One-year-old P. densiflora seedlings were planted in control and warmed plots in April 2010. The air temperature of warmed plots was increased by $3^{\circ}C$ using infrared lamps from November 2010. We measured shoot height, root collar diameter, above and below ground biomass, chlorophyll contents and leaf nitrogen concentration from March 2011 to March 2013. Seedling height and root collar diameter showed no significant difference between warmed and control plots except for root collar diameter measured in June 2012. Seedling leaf biomass was lower in the warmed ($23.94{\pm}2.10g$) than in the control ($26.08{\pm}1.72g$) plots in 2013. Shoot to root ratio (S/R ratio) was lower in the warmed ($1.09{\pm}0.07$) than in the control ($1.31{\pm}0.10$) plots in 2013. Leaf nitrogen concentrations and chlorophyll contents were not significantly different between warmed and control plots except for leaf nitrogen concentration in 2011. Leaf C/N ratio was increased in 2012 under the warming treatment. Low growth and S/R ratio in warmed plots might be related to the higher temperature and water stress. In the future, the below-ground carbon allocation of P. densiflora might be increased by global warming due to temperature and water stress.