• Title/Summary/Keyword: Air-Tubes

Search Result 495, Processing Time 0.03 seconds

An Efficient Thermal Stress Estimation Using Block Adaptive Filtering

  • Tai, Ming-Lang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1269-1271
    • /
    • 2009
  • We had proposed fast thermal stress estimation methodology for the components on system board when the system is stationary within specific ambient air temperature. Now, we will propose one efficient thermal stress estimation methodology, block adaptive filtering methodology, for the FPD electronic system board which is enclosed by mechanical cover.

  • PDF

Development of Manufacture Technology on Aluminum Rear Subframe by Hot Air Forming Method (열간가스성형 공법을 이용한 알루미늄 리어 서브프레임 제조기술 개발)

  • Kim, B.N.;Son, J.Y.;Lee, G.D.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.222-225
    • /
    • 2008
  • Due to new requirements of the automotive industry, concerning lightweight and non-corroding construction, new production methods, The Hot Air Forming process of aluminum alloys are of special interest. The disadvantage of aluminum alloy is the poorer formability compared to steel. The Hot Air Forming process is one of the forming process receiving recent attention. In the current study, Fabrication of aluminum rear subframe has been attempted using seam and seamless aluminum tubes. On the base of hot workability of the extruded tube and PAM-STAMP simulation results, Optimum condition for fabricating aluminum rear sub(lame parts by Hot Air Forming could be determined.

  • PDF

Study on frost Generation and Defrosting Mechanism on Evaporating Tubes for Refrigerator and Air condition industries (냉동공조용 관군에서의 서리발생 및 제상 메커니즘에 관한 연구)

  • Jee, Jae-Hoon;Kim, Chang-Bok;Mun, Sung-Bae;Oh, Cheol
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.234-235
    • /
    • 2005
  • In this experiment study, to acquire elementary data for explaining to generate frost layer in the fin - tube evaporator. the experiment condition is to supply air on 0.3m/s, 0.6m/s, 0.9m/s and inlet air temperature is 15$^{circ}C$, 20$^{circ}C$, 25$^{circ}C$ , supplied air relative humidity is 70%, 80, 90%. And brine temperature in the copper tube was kept -15$^{circ}C$ because, generally cooling temperature range is constantly -15$^{circ}C$ in the heat exchanger for air conditioning system. in conclusion, through this experiment, we did compare with frost layer and frost thickness in each condition and examine these data

  • PDF

Sampling and Analysis of Parathion in the Air and Urinary p-Nitrophenol for Parathion Manufacturing Workers (작업장 공기 중 파라티온과 작업자 소변 중 p-니트로페놀의 시료채취 및 분석)

  • Han, Don-Hee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.4
    • /
    • pp.300-309
    • /
    • 2007
  • Although parathion is an organophosphate pesticide being legally applied for the purpose of agriculture and is being manufactured, parathion in the air and urinary p-nitrophenol, a metabolite of parathion, were not analysed in Korea. Air of the parathion manufacturing workplace was sampled by OVS-2 tubes using NIOSH 5600 and spot urine of workers was sampled at the end of shift. Parathion and urinary p-nitrophenol were analysed by GC/MS (5973 MSD connected with Agilent 6890 GC) and the protocol was included in this study. It was found that this protocol should be so sensitive that determining parathion in the air and urinary p-nitrophenol below level of ACGIH TLV and BEI be adequate. Another finding was that total sampling volume of air of NIOSH 5600 of 240 L should be adjusted to be less than 120 L due to breakthrough.

A study on frost generation and difrosting mechanism on evaporating tubes for Air-conditioning system (냉동공조용 증발기에서 서리의 발생 및 제상 메커니즘에 관한 연구)

  • Jee, Jae-Hoon;Kim, Chang-Bok;Kim, Myung-Hwan;Oh, Cheol
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.166-171
    • /
    • 2005
  • In this experiment study, to acquire elementary data for explaining to generate frost layer in the fin - tube evaporator. the experiment condition is to supply air on 0.3m/s, 0.6m/s, 0.9m/s and inlet air temperature is kept constantly $20^{\circ}C$, supplied air relative humidity is 70%, 80, 90%. And brine temperature in the copper tube was kept $-15^{\circ}C$ because, generally cooling temperature range is constantly $-15^{\circ}C$ in the heat exchanger for air conditioning system. in conclusion, through this experiment, we did compare with frost layer and frost quantity in each condition and examine these data

  • PDF

Effects of Tube Diameter and Surface Sub-Cooling Temperature on R1234ze(E) and R1233zd(E) Film Condensation Heat Transfer Characteristics in Smooth Horizontal Laboratory Tubes (수평 평활관에서 관직경 및 표면 과냉도가 R1234ze(E) 및 R1233zd(E) 막응축 열전달에 미치는 영향)

  • Jeon, Dong-Soon;Ko, Ji-Woon;Kim, Seon-Chang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.5
    • /
    • pp.231-238
    • /
    • 2017
  • HFO refrigerants have recently come to be regarded as promising alternatives to R134a for use in turbo chillers. This study provides results from experiments evaluating the film condensation heat transfer characteristics of HFO refrigerants R1234ze(E) and R1233zd(E) on smooth horizontal laboratory tubes. The experiments were conducted at a saturation vapor temperature of $38.0^{\circ}C$ with surface sub-cooling temperatures in the range of $3{\sim}15^{\circ}C$. We observe that the film condensation heat transfer coefficient decreases as surface sub-cooling temperatures increase. In the case of laboratory tubes with a diameter of 19.05 mm, the film condensation heat transfer coefficients of R1234ze(E) and R1233zd(E) were approximately 11% and 20% lower than those of R134a, respectively. Furthermore, our investigation of the effect of tube diameter on film condensation heat transfer coefficients, demonstrates an inverse relationship where the film condensation heat transfer coefficient increases as laboratory tube diameter decreases. We propose experimental correlations of Nusselt number for R1234ze(E) and R1233zd(E), which yield a ${\pm}20%$ error band.

A Study on the Drag and Heat Transfer Reduction Phenomena and Degradation Effects of the Viscoelastic Fluids (점탄성유체의 저항 및 열전달 감소현상과 퇴화의 영향에 관한 연구)

  • Eum, C.S.;Jeon, C.Y.;Yoo, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.1
    • /
    • pp.37-48
    • /
    • 1990
  • The drag and heat transfer reduction phenomena and degradation effects of drag reducing polymer solutions which are known as the viscoelastic fluids are investigated experimentally for the turbulent circular tube flows. Two stainless steel tubes are used for the experimental flow loops. Aqueous solutions of Polyacrylamide Separan AP-273 with concentrations from 300 to 1000 wppm are used as working fluids. Flow loops are set up to measure the friction factors and heat transfer coefficients of test tubes in the once-through system and the recirculating flow system. Test tubes are heated by power supply directly to apply constant heat flux boundary conditions on the wall. Capillary tube viscometer and falling ball viscometer are used to measure the viscous characteristics of fluids and the characteristic relaxation time of a fluid is determined by the Powell-Eyring model. The order of magnidude of the thermal entrance length of a drag reducing polymer solution is close to the order of magnitude of the laminar entrance length of Newtonian fluids. Dimensionless heat transfer coefficients of the viscoelastic non-Newtonian fluids may be represented as a function of flow behavior index n and newly defined viscoelastic Graetz number. As degradation continues viscosity and the characteristic relaxation time of the testing fluids decrease and heat transfer coefficients increase. The characteristic relaxation time is used to define the Weissenberg number and variations of friction factors and heat transfer coefficients due to degradation are presented in terms of the Weissenberg number.

  • PDF

Sliding Wear and Fretting Wear of Steam Generator Tube Materials (증기발생기 튜브재질의 미끄럼 마멸 및 프레팅 마멸 특성)

  • 김동구;조정우;이영제
    • Tribology and Lubricants
    • /
    • v.17 no.5
    • /
    • pp.380-385
    • /
    • 2001
  • In nuclear power steam generators, high flow rates can induce vibration of the tubes resulting in fretting wear damage due to contacts between the tubes and their supports. In this paper the fretting wear tests and the sliding wear tests were performed using the steam generator tube materials of Inconel 600 and 690 against STS 304. Sliding tests with the pin-on-disk type tribometer were done under various applied loads and sliding speeds at air environment. Fretting tests were done under various vibrating amplitudes and applied normal loads. From the results of sliding and fretting wear tests, the wear of Inconel 600 and 690 can be predictable using the work rate model. Depending on normal loads and vibrating amplitudes, distinctively different wear mechanisms and often drastically different wear rates can occur. It was found the results that the wear coefficients for Inconel 600 and 690 were 262.3$\times$10$\^$-15/Pa$\^$-1/ and 209.2$\times$10$\^$-15/Pa$\^$-1/, respectively. This study shows that Inconel 690 can provide much better wear resistance than Inconel 600 in air.

An Experimental Study on Condensation Heat Transfer of Low-Finned Tubes (낮은 핀관 (low-fin tube)의 응축 열전달 성능에 관한 실험적 연구)

  • Kim, N.H.;Jung, I.K.;Kim, K.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.298-309
    • /
    • 1995
  • Low-fin tubes are widely used to enhance condensation heat transfer. In this study, condensation heat transfer experiment was conducted on the low-fin tube using R-11. Three different fin densities-787 fpm (fins per meter), 1102 fpm. 1378 fpm-were tested. The results show that low-fin tube enhances the condensation heat transfer considerablely. The enhancement increases as the fin density increases. It was also found that the fin shape and height have a significant effect on the condensation heat transfer coefficient. Slender or high fins showed a higher condensing heat transfer coefficient compared with fat, low fins. For the tube with 1378 fpm, however, excessive fin height decreased the condensing heat transfer coefficient. The reason may be attributed to the increasing condensate retention angle as the fin density increases. The experimental data are compared with existing prediction models. Results show that Webb's surface tension model predicted the data best (within ${\pm}20%$), which confirms that surface tension plays the major role in low-fin tube condensation.

  • PDF