• 제목/요약/키워드: Air-Tubes

검색결과 495건 처리시간 0.025초

Cyclic loading test for concrete-filled hollow PC column produced using various inner molds

  • Chae-Rim Im;Sanghee Kim;Keun-Hyeok Yang;Ju-Hyun Mun;Jong Hwan Oh;Jae-Il Sim
    • Steel and Composite Structures
    • /
    • 제46권6호
    • /
    • pp.793-804
    • /
    • 2023
  • In this study, cyclic loading tests were conducted to assess the seismic performance of cast-in-place (CIP) concrete-filled hollow core precast concrete columns (HPCC) constructed using steel ducts and rubber tubes. The outer shells of HPCC, with a hollow ratio of 47%, were fabricated using steel ducts and rubber tubes, respectively. Two combinations of shear studs & long threaded bars or cross-deformed bars & V-ties were employed to ensure the structural integrity of the old concrete (outer shell) and new CIP concrete. Up to a drift ratio of 3.8%, the hysteresis loop, yielding stiffness, dissipated energy, and equivalent damping ratio of the HPCC specimens were largely comparable to those of the solid columns. Besides the similarities in cyclic load-displacement responses, the strain history of the longitudinal bars and the transverse confinement of the three specimens also exhibited similar patterns. The measured maximum moment exceeded the predicted moment according to ACI 318 by more than 1.03 times. However, the load reduction of the HPCC specimen after reaching peak strength was marginally greater than that of the solid specimen. The energy dissipation and equivalent damping ratios of the HPCC specimens were 20% and 25% lower than those of the solid specimen, respectively. Taking into account the overall results, the structural behavior of HPCC specimens fabricated using steel ducts and rubber tubes is deemed comparable to that of solid columns. Furthermore, it was confirmed that the two combinations for securing structural integrity functioned as expected, and that rubber air-tubes can be effectively used to create well-shaped hollow sections.

발전용 Soot Blower 최적운전에 관한 연구 (A Study on Optimal Operation for Soot Blower of Power Plant)

  • 김성호;정해원;육심균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.541-543
    • /
    • 2004
  • An optimal soot blowing system has been developed for an optimal operation of power utility boilers by both minimization of the use of steam and the number of soot blowers worked during soot blowing. Traditionally, the soot blowing system has been operated manually by operators. However, it causes the reduction of power and thermal performance degradation because all soot blowers installed in the plant should be worked simultaneously even there are lots of tubes those are not contaminated by slagging or fouling. Heat transfer area is divided into four groups, furnace, convection area including superheater, reheater and economizer, and air preheater in the present study. The condition of cleanness of the tubes is calculated by several parameters obtained by sensors. Then, a part of soot blowers works automatically where boiler tubes are contaminated. This system has been applied in a practical power plant. Therefore, comparison has been done between this system and manual operation and the results are discussed.

  • PDF

탄소성 금속관 내 가스 폭굉의 수치적 연구 (Numerical investigation of gaseous detonation observed in the elasto-plastic metal tubes)

  • 곽민철;도영대;박정수;여재익
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.85-87
    • /
    • 2012
  • We present a numerical investigation on gaseous (ethylene-air mixture) detonation in the elastoplastical metal tubes to understand the wall effects associated with the developing detonation instability. The acoustic disturbances originating from the rapidly expanding tube walls reach the detonating flame surface, thereby causing flame distortions and total energy losses. The compressible Navier-Stokes equations with equation of state for gas and elasto-plastic deformation field equations for inert tubes are solved simultaneously to understand the complex multi-material interaction in the rapidly expanding gas pipe. In order to track governing variables across the material interface, we use the hybrid particle level-set and ghost fluid methods to precisely estimate the interfacial quantities. Features observed from the deforming (thin) tube show substantially different behavior when a detonation propagates in the rigid (thick) tube with no acoustically responding wall conditions.

  • PDF

HEATING FLOOR FOR POULTRY : THEORETICAL AMD TECHNOLOGICAL INVESTIGATIONS

  • Narushin, Valery G.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.1090-1100
    • /
    • 1996
  • Heating floor is the most profitable system of air heating at poultry houses. THe tubes with heating elements inside are laid into the layer of concrete. To prevent lossese of heat penetration deep into the ground the layer of isolation material is laid below the tubes . The depth of isolation laying in every point of the heating floor may be calculated according to the author's formula using the data of temperature on the floor surface and the tube, the distance between tow nearest tubes, and the distance between the tube and the floor surface. Technological investigations allow to estimate the optimal density for greese and ducks when they are bred on the heatuing floor.

  • PDF

충돌에 의한 차체 박육구조부재의 에너지 흡수특성에 관한 연구 (An Energy Absorption Characteristic of Thin-Walled Structure Members by Crushing Load)

  • 양인영;심재기;김선규
    • 한국자동차공학회논문집
    • /
    • 제3권5호
    • /
    • pp.74-81
    • /
    • 1995
  • In this paper, the crushing tests of circular tubes under axial impact loading are conducted to investigate the energy absorption abilities. A cross head with 18kg launched by the compressed air collides against circular tubes. Circular tubes used for this experiment are Al and CFRP laminates, which have 8 ply with $15^{\circ}$ and $45^{\circ}$. The absorbed energy unit mass and volume of the CFRP specimen with $15^{\circ}$ are higher than those of aluminum specimen. CFRP specimen having small stacking angle have better energy absorption abilities than that of large stacking angle.

  • PDF

테프론 코팅 전열관 표면으로의 열 및 물질 전달 특성에 관한 실험적 연구 (Experimental Study on the Characteristics of Heat and Mass Transfer on the Teflon Coated Tubes)

  • 이장호;김형대;김정배;김무환
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1051-1060
    • /
    • 2003
  • The heat and mass transfer on two kinds of tube surfaces (bare stainless steel tube and Teflon coated tube) in steam-air mixture flow are experimentally studied to obtain design data for the heat exchanger of the latent heat recovery from flue gas. In the test section, 3-tubes are horizontally installed, and steam-air mixture is vertically flowed from the top to the bottom. The pitch between tubes is 67mm, the out-diameter of tube is 25.4mm, and the thickness is 1.2mm ; blockage factor (cross sectional tube area over the cross sectional area of the test section) is about 0.38. All of sensors and measurement systems (RTD, pressure sensor, flow-meter, relative humidity sensor, etc.) are calibrated with certificated standard sensors and the uncertainty for the heat transfer measurement is surveyed to have the uncertainty within 7%. As experimental results, overall heat transfer coefficient of the Teflon (FEP) coated tube is degraded about 20% compared to bare stainless tube. The degradation of overall heat transfer coefficient of Teflon coated tube comes from the additional heat transfer resistance due to Teflon coating. Its magnitude of heat transfer resistance is comparable to the in-tube heat transfer resistance. Nusselt and Sherwood numbers on Teflon (FEP) coated surface and bare stainless steel surface are discussed in detail with the contact angles of the condensate.

유기용제용 시료채취기 개발을 위한 활성탄 성능검정에 관한 연구 (Development of an Sampling Tube for Organic Solvents and Study on the Adsorption Capacity of the Activated Charcoal)

  • 배야성;박두용;임대성;박병무
    • 한국산업보건학회지
    • /
    • 제15권1호
    • /
    • pp.8-18
    • /
    • 2005
  • Adsorption capacity for the charcoal were tasted in this study to verify the performance of them for the use of the sampling media in industrial hygiene field. Two set of experiments were conducted. The first experiment was to test performance of the tested charcoal tube that were assembled in the laboratory with the use of the GR grade charcoal. The other tests were investigate the adsorption capacity of the charcoal tested in this study and charcoals embedded in the commercial charcoal tubes. Known air concentration samples for benzene, toluene, and o-xylene were prepared by the dynamic chamber. 1. At low air concentration levels (0.1${\times}$TLV), there was no significant differences between the tested charcoal tubes and the SKC charcoal tubes. This implies that there is no defect with the adsorption capacity of the charcoal. 2. At high concentration with 60 minutes sampling, the breakthrough were found only in the tested charcoal while no breakthrough were shown in the SKC charcoal. 3. From the breakthrough tests for the charcoal, the micropore volume(Wo) were calculated by the curve fitting with the use of Dubinin/Radushkevich(D/R) adsorption isotherm equation. The calculated values were 0.687cc/g for SKC, 0.504cc/g for Sensidyne, and 0.419cc/g for the tested charcoal(Aldrich). 4. Adsorption capacities were obtained from the isotherm curves shown adsorption capacities at several levels of the challenge concentration. All range of the air concentration concerned in industrial hygiene, the SKC charcoal showed approximately two times of adsorption capacity compared to the tested charcoal.

중온형 원통다관형 수증기 개질기의 부분단열 및 반경방향 분배 구조의 영향 (Partial Insulation and Heating Tubes Configuration of Shell and Tube Steam Reformer at Medium Temperature)

  • 박다인;유상석
    • 한국수소및신에너지학회논문집
    • /
    • 제28권6호
    • /
    • pp.618-626
    • /
    • 2017
  • Conventional high temperature reformers are not suitable for hybrid fuel cell systems that use waste heat as a heat source. So, development of a low temperature type reformer is needed. However, the analysis was conducted in two ways to increase the thermal efficiency, because of low reforming rate due to the low heat source. First, it is a way to ger thermal gain from the outside through partial insulation. In the case of one heat source tube and several heat source tubes, we analyzed the effect of partial heat insulation in some cases. Second, we found the most efficient arrangement of the heat source tubes by changing the location of the heat source tubes. The interpretation was carred out using the COMSOL Mutiphysics program.

이상 유동 환경이 증기 발생기 세관과 지지대의 프레팅 마모에 미치는 영향에 대한 연구 (The Influence of Two Phase Flow on Fretting Wear between Steam Generator Tube and Supporting Bar)

  • 이영제;박정민;정성훈;김진선;박세민
    • Tribology and Lubricants
    • /
    • 제24권6호
    • /
    • pp.362-367
    • /
    • 2008
  • Tubes in nuclear steam generators are held up by supports because the tubes are long and slender. Fluid flows of high-pressure and high-temperature in the tubes cause oscillating motions between tubes and supports. This is called as FIV (flow induced vibration), which causes fretting wear in contact parts of tube-support. The fretting wear of tube-support can threaten the safety of nuclear power plant. The tube and support materials were Inconel 690 and STS 409. The wear tests were conducted in various environments, which are in water without flow, in flowing water and in flowing water with air. The results showed that the flow of water influenced on the wear-life of tube. The wear-life of tube decreased in water flow as compared with wear-life in stationary water.