• Title/Summary/Keyword: Air-Heater

Search Result 485, Processing Time 0.021 seconds

Experimental Study for Estimation of Air Heating Performance and Improvement of Thermal Performance of Hybrid Solar Air-water Heater (태양열 공기-물 가열기의 공기 가열 성능 평가 및 열적 성능 개선을 위한 실험적 연구)

  • Choi, Hwi-Ung;Kim, Young-Bok;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.1
    • /
    • pp.47-57
    • /
    • 2017
  • Solar energy is one of the important renewable energy resources. It can be used for air heating, hot water supply, heat source of desiccant cooling system and so on. And many researches for enhancing efficiency have been conducted because of these various uses of solar thermal energy. This study was performed to investigate the air heating performance of hybrid solar air-water heater that can heat air and liquid respectively or simultaneously and finding method for improving thermal performance of this collector. This collector has both liquid pipe and air channel different with the traditional solar water and air heater. Fins were installed in the air channel for enhancing the air heating performance of collector. Also air inlet & outlet temperature, ambient temperature and solar collector's inner part temperature were confirmed with different air velocity on similar solar irradiance. As a result, temperature of heated air was shown about $43^{\circ}C$ to $60^{\circ}C$ on the $30^{\circ}C$ of ambient temperature and thermal efficiency of solar collector was shown 28% to 73% with respect to air velocity. Also, possibility of improvement of thermal performance of this collector could be ascertained from the heat transfer coefficient calculated from this experiment. Thus, it is considered that the research for finding optimal structure of hybrid solar air-water heater for enhancing thermal performance might be needed to conduct as further study based on the method for improving air heating performance confirmed in this study.

Research on the Heat Transfer and Pressure Drop by Installation Conditions of Rectangular Obstacle in a Solar Air Heater Based on CFD (CFD를 활용한 태양열 공기가열기 내 사각저항체 설치 조건에 따른 열전달 및 압력강하에 관한 연구)

  • Choi, Hwi-Ung;Kim, Young-Bok;Son, Chang-Hyo;Yoon, Jung-In;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.1
    • /
    • pp.77-89
    • /
    • 2019
  • The solar air heater has various performances according to an obstacle installed in the air duct. Many studies on thermal performance have been conducted. But many of these studies were using a kind of rib type obstacle attached at the bottom of absorbing plate, but they are so hard to be manufactured. In this study, characteristics of the heat transfer and pressure drop in the solar air heater with various horizontal rectangular obstacles was investigated by CFD (Computational Fluid Dynamics) analysis. As a result, the heat transfer performance was improved from 1.2 to 3.32 times depending on installation conditions of rectangular obstacle. The pressure drop, however, also increased with increment of heat transfer performance from 2.8 to 180 times only by changing installation conditions of rectangular obstacle. Thus, the performance factor presenting the thermal performance enhancement on the same pressure drop was also confirmed. As a result, the highest value of 0.828 as better performance factor was obtained at the lower height of rectangular obstacle and this value has started to decrease with increment of heat transfer performance. In the end, it could be confirmed that the pressure drop was carried higher than the quantity of improvement of the heat transfer performance when the heat transfer performance was increased by change of installation conditions of rectangular obstacle. Both heat transfer enhancement and pressure drop to be required for system need to be considered before the rectangular obstacles are applied to the solar air heater.

A Study on the Characteristics of Heating Performance of High-Performance Heat Pump with VI cycle using Re-Heater (재열기를 사용한 고성능 VI 사이클 열펌프의 난방 성능 특성에 관한 연구)

  • Lee, Jin-Kook;Choi, Kwang-Hwan
    • Journal of Power System Engineering
    • /
    • v.19 no.4
    • /
    • pp.69-75
    • /
    • 2015
  • In this study, the characteristics of heating performance of a high-performance air-cooled heat pump with vapor-injection(VI) cycle using re-heater was investigated experimentally. Devices used in the experiment is consist of a VI compressor, condenser, oil separator, refrigerant (economizer outlet refrigerant) re-heater, economizer, evaporator. And R410A was used as a working fluid. The experiment was conducted with two cycles(cycles A and B) for investigating heating performance. In case of cycle B, heat exchange was conducted by re-heater between outlet refrigerant of compressor and suction refrigerant of the VI system(Fig.1, re-heater). But the re-heater was not used in case of cycle A. As a result of this experiment, discharge temperature of refrigerator in compressor was shown higher value, when the cycle B was conducted, because of the heat exchange between suction refrigerant of VI cycle and outlet refrigerant of compressor in the re-heater than cycle A that was not use re-heater. it means that liquid hammer and the decrement of heating performance can be decreased by using re-heater. Also, Heating coefficient of performance(COPh) was shown about 2.98 in Cycle B which was 4% higher than Cycle A and from these results, It was confirmed that the improvement of the heating performance of heat pump with VI cycle can be achieved by applying re-heater.

Research on the Performance of Regenerator using Hot Water from Solar Water Heater(1st paper : On the Effect of Solution Temperature to Regeneration Rate) (태양열 온수기를 이용한 다목적 공조시스템의 재생효율에 관한 연구(제1보 액체흡수제 온도가 재생량에 미치는 영향))

  • Woo, Jong-Soo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.1
    • /
    • pp.53-61
    • /
    • 2004
  • Absorption potential of desiccant solution significantly decreases after absorbing moisture from humid air, and a regeneration process requires a great amount of energy to recover absorption potential of desiccant solution. In an effort to develop an efficient solar water heater, this study examines a regeneration process using hot water obtained from solar water heater to recover absorption potential by evaporating moisture in the liquid desiccant. In this paper, a solar absorption dehumidifying system with solar water heater is suggested to save the electricity for operating an air conditioner. LiGl(lithium chloride) solution was adopted as a liquid desiccant in the proposed system, and hot water obtained from the solar water heater was used for regenerating the liquid desiccant. As a result, it was clear that the dilute LiCl solution could be regenerated by hot water, and the regeneration rate depends mostly on temperature level of liquid desiccant. The regeneration rates were about 2.4kg/h with $40^{\circ}C$, 4.0kg/h with $50^{\circ}C$, and 6.2kg/h with $60^{\circ}C$ of hot water respectively.

Design and Fabrication of Silicon Flow Sensor For Detecting Air Flow (유속 감지를 위한 실리콘 유량센서의 설계 및 제작)

  • 이영주;전국진;부종욱;김성태
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.5
    • /
    • pp.113-120
    • /
    • 1994
  • Silicon flow sensor that can detect the velocity and direction of air flow was designed and fabricated by integrated circuit process and bulk micromachining technique. The flow sensor consists of three-layered dielectric diaphragm, a heater at the center of the diaphragm, and four thermopiles surrounding the heater at each side of diaphragm as sensing elements. This diaphragm structure contributes to improve the sensitivity of the sensor due to excellent thermal isolation property of dielectric materials and their tiny thickness. The flow sensor has good axial symmetry to sense 2-D air flow with the optimized sensing position in the proposed structure. The sensor is fabricated using CMOS compatible process followed by the anisotropic etching of silicon in KOH and EDP solutions to form I$\mu$ m thick dielectric diaphragm as the last step. TCR(Temperature Coefficient of Resistance) of the heater of the fabricated sensors was measured to calculate the operating temperature of the heater and the output voltage of the sensor with respect to flow velocity was also measured. The TCR of the polysilicon heater resistor is 697ppm/K, and the operating temperature of the heater is 331$^{\circ}C$ when the applied voltage is 5V. Measured sensitivity of the sensor is 18.7mV/(m/s)$^{1/2}$ for the flow velocity of smaller than 10m/s.

  • PDF

Experimental Study on the Heating Performances of the Air Heater with Diesel for Passenger Cabin Heating of an Electric Vehicle (전기자동차용 승차공간 난방용 디젤 공기 히터의 실차 성능에 관한 연구)

  • Bang, You-Ma;Seo, Jae-Hyeong;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7250-7255
    • /
    • 2015
  • The objective of this study is to experimentally investigate the heating performances of the portable air combustion heater using diesel fuel for auxiliary cabin heating of the battery electric vehicle. In order to evaluate the heating performances of the air combustion heater, the heating capacity was calculated by the temperature at inlet and outlet parts of the considered heater and the inner temperature distribution characteristics of the vehicle were measured during 1600 seconds with an interval of 1 second. The theoretical efficiency of the tested heater was calculated by temperature data of the air of supplying and exhausting to the cabin. As the air passed the heat-sink, the air temperature at the end of heat-sink reached to $101.3^{\circ}C$ and the difference of temperature on heat-sink was 67.8%. The average heating capacity of the air combustion heater showed 2.0 kW. After 1800 seconds, the inner temperature of the vehicle cabin was continuously increased. The temperatures of the top side and the bottom side of the car cabin under consideration were increased upto $42.5^{\circ}C$ and $24.3^{\circ}C$, respectively, and the theoretical efficiency of the tested heater was on average 63.7%.

A Study on the Precise Measurement of the Performance in the Heating System (발열시스템 열적 성능의 정밀측정에 관한 연구)

  • 최창용;김홍건
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.60-67
    • /
    • 2002
  • A precise measurement of field test was performed to estimate the thermal performance of the forced convection electric air heater by experiment. Air temperature, flow rate and electrical power input were measured with the related measurement sensors, and acquisition methods for the measured data were studied to estimate the thermal performance of the tested air heater effectively. To determine the mean air temperature at the flow cross-section, measuring positions were chosen by considering the flow velocity profile and the equally divided cross-sectional area. From the experimental results, thermal efficiency was obtained accurately as an indication of the tested heating system performance.

Effect of Heating by Infrared Heating Lamps on Growth of Strawberry and Heating Cost (적외선 난방등을 이용한 난방이 딸기의 생육과 난방비에 미치는 영향)

  • An, Jae Uk;An, Chul Geon;Hwang, Yeon Hyeon;Yoon, Hae Suk;Chang, Young Ho;Shon, Gil Man;Jeong, Byoung Ryong
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.355-360
    • /
    • 2013
  • Diesel-burning air heater (air heater) and infrared heating lamp (infrared heater) were installed as auxiliary heaters in two single water-curtained plastic greenhouses with a set night temperature of $6^{\circ}C$ for cultivation of strawberry 'Seolhyang'. The average night air temperature was $6.6^{\circ}C$ in the infrared heater treatment and $7.1^{\circ}C$ in the air heater treatment. However, when the minimum outside temperature fell below $-10^{\circ}C$, the air heater had less internal temperature fluctuations. In contrast, the infrared heater had some cases of falling below the set temperature. The relative humidity was higher than 98% by the side-effect of water-curtain system regardless of the heating system. There was about $5^{\circ}C$ difference in leaf temperature between the turned-on and -off state of the infrared heater, and the efficacy of the infrared heater on leaf temperature was only limited to about 4 meters from the system. Peduncle length and plant height in the infrared heater tended to be greater than those in the air heater. There was, however, no statistically difference in leaf size and numbers of leaves, flowers on first cluster and branches. There was no difference in soluble solids content, fruit firmness, average fruit weight of the harvested fruits, and the yield. Comparing the heating costs, the air heater system took 622,662 won based on 543 L tax-free diesel, while the infrared heater system took 235,284 won by consuming 5,685 kWh of electricity, and 62.2% heating costs saving was achieved.

An Economic Analysis of Ice Thermal Storage and Absorption Chiller-Heater Systems (빙축열 시스템과 흡수식 냉온수기 공조 방식의 경제성 분석)

  • Lim, Hyun-Woo;Kim, Young-Il;Kim, Kang-San;Kang, Yong-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.218-223
    • /
    • 2009
  • Cost related to building equipment accounts for about 85% of the life cycle cost of buildings. Therefore proper selection of air-conditioning system is important for reducing the overall cost of buildings. In this study, large capacity ice thermal storage and absorption chiller-heater for air-conditioning a building with a floor area of $9,900\;m^2$ are compared economically. For easy input and analysis, an Ms Excel VBA program has been developed. To consider all the factors of initial and operation costs effectively, an annual equal payment method is proposed. Under the assumptions made in this study, overall cost of an absorption chiller-heater is less than that of an ice thermal storage, but this is not absolute and different outcome may result if different assumptions are made. This study is useful for those who are interested in choosing an economical air-conditioning system for large-size buildings with simple calculations.

  • PDF

Numerical Simulation on Dynamic Characteristics of a Water Heater System Driven by a Heat Pump (열펌프 가열식 온수기의 동적특성 해석)

  • 김민성;김민수;백남춘
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.1
    • /
    • pp.10-20
    • /
    • 2002
  • A dynamic model of a water heater system heated by a heat pump was developed. The water heater system was composed of heat pump and hot water reservoirs. Finite volume method (FVM) was applied to describe the heat exchangers. A new constraint on electronic expansion valve (EEV) or thermostatic expansion valve (TXV) that can control superheat after the evaporator was developed. Dynamic performances were evaluated for various sizes of the reservoir. In order to compare those performances, time scale was normalized by time constant representing the characteristics of reservoir size. Time constant was determined from quasi steady-state simulation of the system. From the simulation, the size of the water heater reservoir was found to have a large influence on the transient performance of the sys- tem. Therefore, the optimization of the reservoir size is needed in a design process.