• Title/Summary/Keyword: Air volume

Search Result 2,285, Processing Time 0.04 seconds

How to Reflect Sustainable Development in Overseas Investment including Equator Principles (해외투자(海外投資)와 지속가능발전 원칙 - 적도원칙(赤道原則)(Equator Principles)을 중심으로 -)

  • Park, Whon-Il
    • 한국무역상무학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.45-72
    • /
    • 2006
  • The Equator Principles are a set of voluntary environmental and social guidelines for ethical project finance. These principles commit banks and other signatories to not finance projects that fail to meet these guidelines. The principles were conceived in 2002 on an initiative of the International Finance Corporation and launched in 2003. Since then, dozens of major banks have adopted the Principles, and with these banks among them accounting for more than three quarters of all project loan market volume the Principles have become the de facto standard for all banks and investors on how to deal with potential social and environmental effects of projects to be financed. While regarding the Principles an important initiative, NGOs have criticised the Principles for not producing real changes in financing activities and for allowing projects to go through that should have been screened out by the Principles, such as the Sakhalin-II oil and gas project in Russia. In early 2006, a process of revision of the principles was begun. The Equator Principles state that endorsing banks will only provide loans directly to projects under the following circumstances: - The risk of the project is categorized in accordance with internal guidelines based upon the environmental and social screening criteria of the International Finance Corporation (IFC). - For all medium or high risk projects (Category A and B projects), sponsors complete an Environmental Assessment, the preparation of which must meet certain requirements and satisfactorily address key environmental and social issues. - The Environmental Assessment report addresses baseline environmental and social conditions, requirements under host country laws and regulations, applicable international treaties and agreements, sustainable development and use of renewable natural resources, protection of human health, cultural properties, and biodiversity, including endangered species and sensitive ecosystems, use of dangerous substances, major hazards, occupational health and safety, fire prevention and life safety, socio-economic impacts, land acquisition and land use, involuntary resettlement, impacts on indigenous peoples and communities, cumulative impacts of existing projects, the proposed project, and anticipated future projects, participation of affected parties in the design, review and implementation of the project, consideration of feasible environmentally and socially preferable alternatives, efficient production, delivery and use of energy, pollution prevention and waste minimization, pollution controls (liquid effluents and air emissions) and solid and chemical waste management. - Based on the Environmental Assessment, Equator banks then make agreements with their clients on how they mitigate, monitor and manage those risks through an 'Environmental Management Plan'. Compliance with the plan is required in the covenant. If the borrower doesn't comply with the agreed terms, the bank will take corrective action, which if unsuccessful, could ultimately result in the bank canceling the loan and demanding immediate repayment. - For risky projects, the borrower consults with stakeholders (NGO's and project affected groups) and provides them with information on the risks of the project. - If necessary, an expert is consulted. The Principles only apply to projects over 50 million US dollars, which, according to the Equator Principles website, represent 97% of the total market. In early 2006, the financial institutions behind the Principles launched stakeholder consultations and negotiations aimed at revising the principles. The draft revised principles were met with criticism from NGO stakeholders, who in a joint position paper argued that the draft fails by ignoring the most serious critiques of the principles: a lack of consistent and rigorous implementation.

  • PDF

Gas/particle Partitioning of PAHs Segregated with Particle Size in Equilibrium States (대기 중 PAHs의 입경별 가스/입자 분배평형에 관한 연구)

  • Park, Jin-Soo;Lee, Dong-Soo;Kim, Jong-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1270-1276
    • /
    • 2005
  • When gas/particle partitioning of PAHs in the atmosphere approached an equilibrium state, the slope of linear regression between gas/particle partitioning coefficient($logK_p$) and subcooled liquid vapour pressure($logP_L^O$) was -1. But it was alleged that the slope of equilibrium state might not be -1 in real atmospheric environment due to heterogeneous characteristics of particulate matter. In This study, it would be found if gas/particle partitioning of PAHs segregated with particle size in equilibrium state was based on the hypothesis mentioned above. We have calculated the slopes of $logK_p$ v.s. $logP_L^O$ after collecting 10 set samples which consisted of particulate and vaporous phases. The slope was close to -1 in equilibrium states. But despite of equilibrium state, all slopes segregated with particle size were not close to -1 and those were gentler with larger particle size. The difference of slopes in equilibrium states was almost against the assumption of gas/particle partitioning theory. When the gas/particle partitioning was due to adsorption, the desorption enthalpy was different in each particle size. When it was absorption, the activity coefficient was different. The difference of desorption enthalpy and activity coefficient in each particle size indicate the heterogeneous characteristics of the bulk particle. This may be the reason for slope variation with particle size even though in an equilibrium state.

Effect of Sludge Pellets on $NO_x$ REmoval in $BaTiO_3$-sludge Packed-bed Reactor ($BaTiO_3$-슬러지 Packed-bed형 반응기에서 $NO_x$제거에 미치는 슬러지의 영향)

  • 박재윤;송원섭;고희석;박상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.10
    • /
    • pp.861-867
    • /
    • 2001
  • In this paper, in order to investigate the catalytic effect of the sludge exhausted from waterworks on NO$_{x}$ removal, we measure NO removal characteristics with and without sludge pellets in BaTiO$_3$-sludge packed-bed reactor of plate-plate geometry. NO initial concentration is 50 ppm balanced with air and a gas flow rate is 5ι/min. Gas temperature is changed from 25 to 10$0^{\circ}C$ to investigate the role of sludge pellet on removing active oxygen species and NO$_2$. BaTiO$_3$pellets is filled for coronal discharge at upstream of reactor and sludge pellets is filled for catalytic effect at downstream of reactor. The volume percent of sludge pellets to BaTiO$_3$pellets is changed from 0% to 100% and AC voltage is supplied to the reactor for discharging simulated gases. In the results, when sludge pellets is put at the downstream of plasma reactor, NO removal rate is slightly increased. However, NO$_2$and $O_3$ as by-products during NO removal is significantly decreased from 51ppm without sludge pellets to 5 ppm with sludge pellets and from 50 ppm without sludge pellets to 0.004ppm with sludge pellets, respectively. Therefore, NO$_{x}$(NO+NO$_2$) removal rate is increased up to 93%. It is thought that sludge pellet maybe react with active oxygen species and NO$_2$ generated by corona discharge in surface of BaTiO$_3$pellets, the then NO$_2$O$_3$as by-products are considerably decreased. When we increase gas temperature from room temperature to 10$0^{\circ}C$, NO removal rate is decreased, while NO$_2$ concentration is independent on gas temperature. These result suggest that the removal mechanism of active oxygen species and NO$_2$in sludge pellet is not absorption, but chemical reaction. Therefore we expect that sludge pellets exhausted for waterworks could be used as catalyst for NO$_{x}$ removal with high removal rate and low by-product.oduct.

  • PDF

Effect of Na Salt on the Formation of MgO Obtained from Mg(OH)2 by Precipitation Method (침전법으로 제조된 Mg(OH)2의 잔류 Na염이 MgO 입자 형성에 미치는 영향)

  • Lee, Dong-Hyun;Ryu, Seung-Bom;Kim, Dae-Sung;Lim, Hyung-Mi;Lee, Seung-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.54-60
    • /
    • 2012
  • The particle size of MgO was examined as a function of the Na content in $Mg(OH)_2$ powders and the calcination temperature. $Mg(OH)_2$ suspension was obtained by dropwise precipitation of $Mg(NO_3)_2{\cdot}6H_2O$ and NaOH solutions. The suspension was diluted by varying the dilution volume ratio of distilled water to $Mg(OH)_2$ suspension to change the Na salt concentration in the suspension. $Mg(OH)_2$ slurry was filtered and dried at $60^{\circ}C$ under vacuum, and then its $Mg(OH)_2$ powder was calcined to produce MgO with different amount of Na content at $500\sim900^{\circ}C$ under air. Investigation of the physical and chemical properties of the various MgO powders with dilution ratio and calcination temperature variation was done by X-ray diffraction, transmission electron microscopy, BET specific surface area and thermal gravimetric analysis. It was observed that MgO particle size could depend on the condition of calcination temperature and dilution ratio of the $Mg(OH)_2$ suspension. The particle size of the MgO depends on the Na content remaining in the $Mg(OH)_2$ powder, which powder was prepared by changing the dilution ratio of the $Mg(OH)_2$ suspension. This change increased as the calcination temperature increased and decreased as the dilution ratio increased. The growth of MgO particle size according to the increase of temperature was more effective when there was a relatively high content of Na. The increase of Na content lowered the temperature at which decomposition of $Mg(OH)_2$ to MgO took place, thereby promoting the crystal growth of MgO.

Development of Base Concrete Block for Quiet Pavement System (저소음 포장용 기층 콘크리트 블록 개발)

  • Lee, Kwan-Ho;Park, Woo-Jin;Kim, Kwang-Yeom
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 2010
  • The rapid economic development induced the massive road constructions, becoming bigger and high-speed of the vehicles. However, it brings lots of social problems, such as air pollutions, traffic noise and vibration. Special concrete block for the base course of asphalt pavement is needed to decrease traffic noise such as tire's explosive and vehicles sound, applying Helmholtz Resonators theory to asphalt pavement. If it is applied to the area where it happens considerable noise such as a junction, the street of a housing complex and a residential street, it is one of considerable method to solve the social requirements of noise problem. This research examines couple of laboratory tests for the sound absorption effect of the concrete block and the base concrete block. There are specimens which is fixed hall-size, space, depth as the condition of this research, and these are analysed of noise decrease effect using different condition of the first noise of each vehicle. As a result of analysis data according to vehicle noise volume, measurement distance, a form and size of the hall using the base concrete block, the use of special concrete base showed a good alternative solution for decreasing traffic noise level, from 4 dB to 9 dB.

Optimization of $CO_2$ Direct Absorption Method for the Determination of Carbon-14 in Environmental Samples (환경시료중의 방사성탄소 측정을 위한 $CO_2$ 직접흡수법의 최적화 연구)

  • Cho, Soo-Young;Woo, Hyung-Joo;Chun, Sang-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.4
    • /
    • pp.237-242
    • /
    • 1998
  • The goal of this work was to optimize the liquid scintillation counting techniques for the determination of C-14 in environmental samples such as biological and air samples. Carbon-14 activities in most environmental samples were measured with direct $CO_2$ absorption method. The highest figure of merit was found through the variation of Carbosorb $E^{TM}$ and Permatluor $V^{TM}$ ratio, in the measurement windows. The best condition was 1:1 volume ratio. Average 2.35 g of $CO_2$ was reproducibly absorbed in the 20 ml mixture within 40 min. The counting efficiency determined by repeated analysis of NIST oxalic acid standard and the background count rate were measured to be $58.8{\pm}1.4%$ and $1.88{\pm}0.06\;cpm$, respectively in case of saturated solution. The correction curves of counting efficiency for partially saturated solutions and for saturated solutions with quenching were prepared, respectively. The overall uncertainty of the sample specific activity for near background levels was estimated to be about 7 % for 4 hours counting at 95 % confidence level. The long-term stability of samples has been checked for all the counting techniques over a two week periods, and no apparent change in counting efficiency and background level was found at that time.

  • PDF

The Thermal Conduction Property of Structural Concrete using Insulation Performance Improvement Materials (단열성능향상 재료를 사용한 구조용 콘크리트의 열전도 특성)

  • Park, Young-Shin;Kang, Min-Gi;Kim, Jung-Ho;Ji, Suk-Won;Jeon, Hyun-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • The part of a building with the biggest energy loss is the exterior and many studies are actively conducted to reduce the energy loss on that part. However, most studies consider the window frames and insulation materials, but many studies do not discuss the concrete that takes more than 70% of the exterior. In order to minimize the energy loss of buildings, it is necessary to enhance the concrete's insulation performance and studies need to be conducted on this. Therefore, this study used a micro foam cell admixture, calcined diatomite powder, and lightweight aggregates as a part of a study to develop a type of concrete with improved insulation performance that has twice higher thermal conductivity compared to concrete. It particularly secured the porosity inside concrete to lower thermal conductivity. As a result of the experiment, the slump and air capacity showed fair results, but all mixtures containing micro foaming agent showed 14.3~35.1% lower mass per unit of volume compared to regular concrete. Compressive strength decreased slightly due to the materials used to improve the insulating performance, but it all satisfied this study's target strength(24MPa). Thermal conductivity was up to twice higher than that of regular concrete.

Catalytic Cracking of n-Octane over H-ZSM-5 Catalysts: Effect of Calcination and Steam Treatment (H-ZSM-5 촉매에서 n-옥탄의 촉매분해반응: 소성 및 스팀 처리 효과)

  • Lee, Hyun-Ju;Shin, Chae-Ho;Choi, Won Choon;Lee, Chul Wee;Park, Yong Ki
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.291-300
    • /
    • 2008
  • Catalytic cracking of n-octane was carried out over H-ZSM-5 zeolite catalysts after calcination with air and steaming with 100% steam in the temperature range of $550-750^{\circ}C$ for 24 h and compared with the results of thermal cracking. The increase of calcination and steaming temperature resulted in the decrease of surface area, pore volume, and strong acid sites, which was mainly caused by the dealumination of H-ZSM-5 framework. It was found by $^{27}Al$ and $^{29}Si$ MAS NMR that the dealumination was proceeded through the transformation process of tetrahedral framework Al${\rightarrow}$penta-cordinated Al ${\rightarrow}$ octahedral framework Al and the phenomena was much more severe in steaming conditions than that of calcination. In the catalytic cracking of n-octane, as the temperatures of calcination and steaming were increased, the conversion of n-octane, the selectivity of light olefins and ethylene to propylene ratio were decreased due to the dealumination of framework aluminum resulting the loss of acidic strengths. The conversion, selectivity of light olefins and ethylene to propylene ratio reached almost to the level of thermal cracking after steaming at $750^{\circ}C$ for 24 h.

Effect of Hybrid Fibers on the Engineering Properties of HPFRCC (섬유 조합변화가 HPFRCC의 공학적 특성에 미치는 영향)

  • Han, Dongyeop;Han, Min Gheol;Kang, Byeong Hoe;Park, Yong Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.639-645
    • /
    • 2014
  • For the construction materials, concrete, as the most widely used material, is focused on its improvement of performance. Although concrete has many advantages of easiness of handling, economical benefits, and high compressive strength, low tensile strength, brittleness and drying shrinkage are reported as the drawbacks of concrete. Hence, to solve these drawbacks of concrete, many research has conducted especially using fiber-reinforced concrete technology. Especially, HPFRCC which has high volume of fiber reinforcement was suggested as a solution of these drawbacks of normal concrete with increased ductility while it has the possibility of workability loss with fiber clumping which can cause low performance of concrete. Therefore, in this paper, optimized fiber combination with either or both metal and organic fibers is suggested to provide better performance of HPFRCC in tensile strength and ductility. As the results of experiment, better workability was achieved with 1 % of single fiber rather than multiple fibers combinations, espeically, short steel fiber showed the best workability result. Furthermore, in the case of organic fibers which showed higher air content than steel fibers, higher compressive strength was achieved while lower tensile and flexural strength were shown.

Physical Properties of Yukwa Base According to the Extrusion Processing Conditions (I): Manufacturing of Yukwa Base with Combination of Glutinous Rice Flour and Rice Flour (Extrusion 제조조건에 따른 유과바탕의 물리적 품질특성(I): 찹쌀가루와 쌀가루 배합에 따른 유과바탕의 제조)

  • Eun, Jong-Bong;Hsieh, Fu-hung;Choi, Ok-Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.12
    • /
    • pp.1760-1766
    • /
    • 2009
  • Physical properties of Yukwa base extruded with glutinous rice flour, rice flour, defatted soy flour, and salt using an twin-screw extruder were investigated. The ingredients were extruded at various moisture contents (16-18%), screw speeds (300 & 400 rpm) at 43.4 kg/hr feed rate. Length and specific volume of Yukwa base increased with decreasing moisture contents. Hunter's color L* values of Yukwa base was higher whereas $a^*\;and\;b^*$ values were lower with increasing moisture content. Water absorption index of Yukwa base increased with increasing moisture contents. X-ray diffraction of Yukwa base showed B type moisture content of 16% and 17% while it showed A type moisture content of 18%. Degree of crystallinity and breaking strength of Yukwa base were the lowest in the moisture content of 16% while the lowest value for hardness was found in the moisture content of 16% and of 17% with screw speed 400 rpm for all samples. In the microstructure of cross section of Yukwa base, air cell size was larger and cell wall was thicker as moisture content increased. The sensory evaluation of the Yukwa base showed that color and flavor were not significantly different among samples, while taste, appearance, mouth feel, and overall preference were higher as moisture contents decreased.