• Title/Summary/Keyword: Air unit

Search Result 1,592, Processing Time 0.028 seconds

Fault Detection and Diagnosis of an Air Handling Unit Based on Rule Bases (룰 베이스를 이용한 공조기의 고장검출 및 진단)

  • 한도영;주명재
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.7
    • /
    • pp.552-559
    • /
    • 2002
  • The fault detection and diagnosis (FDD) technology may be applied in order to decrease the energy consumption and the maintenance cost of the air conditioning system. In this study, rule bases and curve fitting models were used to detect faults in an air handling unit. Gradually progressed faults, such as the fan speed degradation, the coil water leakage, the humidifier nozzle clogging, the sensor degradation and the damper stoppage, were applied to the developed FBD system. Simulation results show good detections and diagnoses of these faults. Therefore, this method may be effectively used for the fault detection and diagnosis of the air handling unit.

A Study on Architectural Planning of Establishing Air-Conditioning Zoning for Hospital Design Focused on System (체계중심병원설계를 위한 공조조닝 설정의 건축 계획에 관한 연구)

  • Kim, Eun Seok;Yang, Nae Won
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.24 no.3
    • /
    • pp.29-38
    • /
    • 2018
  • Purpose: Space planning to cope with the changing function of the hospital is essential in hospital architecture. In order to do so, it is vital that the paradigm shifts from hospital design focused on purpose toward hospital design focused on system. Not only space planning but also air-conditioning plan, which is most closely related to the operation and maintenance of hospital facilities; and the environment of hospital users, should be able to respond to changes with ease. Thus this study is to provide fundamental data of the air-conditioning plan for the hospital design focused on system by analyzing the concept and characteristics of the air-conditioning plan in the recent hospital architecture planning. Results: As a result of this study, in the air conditioning plan for the hospital architecture planning, the most important are the location relation among the departments the air handling unit room and the air handling unit manage and the air conditioning zoning setting according to the air conditioning system. Therefore, for the hospital architecture planning focused on system, it is necessary to establish the air conditioning setting that can accommodate changeable environment of departments and accordingly the appropriate area range of the air conditioning zoning and the plan for the location of the air handling unit should be considered. Implications: Thereby aims to provide fundamental data on air handling unit zoning planning in the hospital architecture planning.

Evaluation of energy efficiency ratio in the mixed air conditioner system (혼합 공조 시스템의 EER(A) 평가)

  • 김병순;이승홍
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.542-548
    • /
    • 1999
  • Instead of testing split air conditioners, an empirically based calculation procedure may be used to estimate the Energy Efficiency Ratio at ARI A test conditions. Typically, the system involving the indoor unit well sold and the given outdoor unit is called the matched system. All other systems involving a given outdoor unit and other indoor units are called the mixed systems. To estimate the EER(A) for the mixed systems, EER(A) for the matched system must be known, Generally, the EER(A) for the matched system is known. This procedure relies on independent measurements and calculations made on an outdoor unit in conjunction with a matched indoor and a mixed indoor coil. A heat pump simulation model was used to quantify the effects of individual system components on the system performance. The procedure is applicable to all air-conditioning units having rated cooling capacities less than 19,000W and charged with refrigerant 22.

  • PDF

Development of 100 Kw Power Class Airborne Auxiliary Power Unit (100 Kw급 항공용 보조동력장치(APU) 개발)

  • Yang, Soo-Seok;Lee, Dae-Sung;Kim, Seung-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.291-300
    • /
    • 1999
  • Currently under development is an airborne auxiliary power unit with 100 Kw equivalent power, which is composed of a centrifugal compressor, a reverse annular combustor, and a radial turbine. Air-foil bearings are used in this power unit to eliminate the oil supplying system, which can reduce the system complexity and weight. The high speed generator is adopted as an electric power generation and engine starting system, which can also eliminate the reduction gear system. Not only electric power but also pneumatic power is provided by bleeding the compressed air This power unit is aimed for the multi-purpose use such as a primary power unit In the army weapon system, an auxiliary power and environmental control unit in a next-generation tank, and a smoke generating unit.

  • PDF

Evaluation of Thermal Comfort and Ventilation Performance in the Lecture Room with Ventilation System and Two Different Air-conditioning Systems: System Air-conditioner or Fan Coil Unit (환기시스템 설치 강의실에서 시스템에어컨과 팬코일유닛의 열쾌적성 및 환기성능 평가)

  • Han Chang-Woo;Noh Kwang-Chul;Oh Myung-Do
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1079-1087
    • /
    • 2005
  • In this paper, thermal comfort and ventilation performance characteristics in the lecture room with the ventilation system and two different air-conditioning systems, system air-conditioner or fan coil unit, were evaluated by experimental and numerical methods. We compared the measured data with the computational results of the predicted mean vote and carbon dioxide concentration. Additionally the ventilation effectiveness was calculated numerically. From a viewpoint of the uniformity of PMVs in the lecture room, the thermal distribution performance of the system air-conditioner was more effective than the fan coil unit. Carbon dioxide concentration and ventilation effectiveness were barely affected by the type of the air-conditioning system.

A Study on the Characteristics of an Unit Plan for a Tower Type Super-High-Rise-Residence (탑상형 초고층 주거건축의 단위평면 특성에 관한 연구 - 외기접합 면수별 공간구성 특성을 중심으로 -)

  • 이용광
    • Korean Institute of Interior Design Journal
    • /
    • v.13 no.5
    • /
    • pp.90-97
    • /
    • 2004
  • The purpose of this study is to grasp the spatial characteristic of the unit plan for a Super-High-Rise-Residence. This study is focused on the open air contact sides for a tower type Super-High-Rise-Residence. A tower type Super-High-Rise-Residence which has open air contacts from 1 to 3.5 sides differed in spatial characteristics of the unit plan for other apartment units. The current study analyzed 188 unit plans for the size of 40 pyong or larger in Seoul and the metropolitan areas which have been built since 1990. Open air contact side was classified as under 2 sides, 2 sides, and over 2 sides. The unit plan which belong to each open air contact side was Investigated according to the location of public area, the relationship between livingroom and master bedroom, and a method of entry to the master bedroom. The results of this study are as follow: According to increase open air contact sides is changed the location of public area in unit plan from an typical arrangement to various arrangement. Also the relationship between livingroom and master bedroom becomes loose and in a method of entry to the master bedroom increase an indirect approach through other room.

The correlation between noise of outdoor unit and thermodynamic properties of cycle at transient condition of room air-conditioner (가정용 에어컨 실외기의 기동 소음 분석)

  • Son, Young-boo;Lee, Seung-mock;Ha, Jong-hun;Lee, Byeoung-chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.577-582
    • /
    • 2012
  • Recently, noise reduction of air-conditioner is one of the important design factors for high quality product. Especially, customer complaints arise due to noise problem of the outdoor unit. After the operation of air-conditioner start, noise level of outdoor unit is increased gradually and sometimes abnormal noise occurs until it reaches steady state condition. The aim of this paper is to investigate the relation between noise of outdoor unit and thermodynamic properties of cycle at transient condition of room air-conditioner. In order to find out the noise characteristics of outdoor unit, noise and vibration measurements are carried out. Also, the thermodynamic properties of compressor and heat exchanger are measured by using temperature and pressure sensors and experimental results are discussed. Finally, we find out the relation between noise and cycle properties at starting of room air-conditioner and the improvement method to reduce noise level is proposed.

  • PDF

Damping Patch Placement on Outdoor Unit of Air-conditioner by Using Structural Intensity Technique (구조 인텐서티법을 이용한 에어컨 실외기의 제진재 적용)

  • 김규식;진심원;정인화;이정우;강연준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.577-585
    • /
    • 2004
  • In this paper, reactive shearing structural intensity method is extended to damping patches placement on outer panels of outdoor unit of air-conditioner to reduce its structural borne noise. The structural intensity is calculated from the normal velocities of structures that are measured by using a laser scanning vibrometer, and $textsc{k}$-space (wave-number domain) signal processing is used to obtain the spatial derivatives in formulation of structural intensity. This method is applied to the outdoor unit of air-conditioner on shaker-exciting mode and operating mode. and then damping patches are placed over area of high reactive shearing structural intensity for reducing the radiated noise. Experimental results show the largest reduction of sound pressure level of an outdoor unit by appling small damping patches to optimal position.

Expansion ratio estimation of expandable foam grout using unit weight

  • WooJin Han;Jong-Sub Lee;Thomas H.-K. Kang;Jongchan Kim
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.471-479
    • /
    • 2024
  • In urban areas, appropriate backfilling design is necessary to prevent surface subsidence and subsurface cavities after excavation. Expandable foam grout (EFG), a mixture of cement, water, and an admixture, can be used for cavity filling because of its high flowability and volume expansion. EFG volume expansion induces a porous structure that can be quantified by the entrapped air content. This study observed the unit weight variations in the EFG before and after expansion depending on the various admixture-cement and water-cement ratios. Subsequently, the air content before and after expansion and the gravimetric expansion ratios were estimated from the measured unit weights. The air content before expansion linearly increased with an increase in the admixture-cement ratio, resulting in a decrease in the unit weight. The air content after the expansion and the expansion ratio increased nonlinearly, and the curves stabilized at a relatively high admixture-cement ratio. In particular, a reduced water-cement ratio limits the air content generation and expansion ratio, primarily because of the short setting time, even at a high admixture-cement ratio. Based on the results, the relationship between the maximum expansion ratio of EFG and the mixture ingredients (water-cement and admixture-cement ratios) was introduced.

Fault Detection in an Automatic Central Air-Handling Unit (자동 공조설비의 고장 검출 기술)

  • Lee, Won-Yong;Shin, Dong-Ryul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.410-418
    • /
    • 1999
  • This paper describes the use of residual and parameter identification methods for fault detection in an air handling unit. Faults can be detected by comparing expected condition with the measured faulty data using residuals. Faults can also be detected by examining unmeasurable parameter changes in a model of a controlled system using a system identification technique. In this study, AutoRegressive Moving Average with seXtrnal input(ARMAX) and AutoRegressive with eXternal input(ARX) models with both single-input/single-input and multi-input/single-input structures are examined. Model parameters are determined using the Kalman filter recursive identification method. Regression equations are calculated from normal experimental data and are used to compute expected operating variables. These approaches are tested using experimental data from a laboratory's variable-air-volume air-handling-unit.

  • PDF