• Title/Summary/Keyword: Air supply nozzle

Search Result 62, Processing Time 0.018 seconds

New ADD Injection Driven Transonic Wind Tunnel and Test With the AGARD Model (신규 건설 ADD 천음속풍동 소개 및 AGARD 표준모형 공력계수 비교)

  • Seo, Kyugnwon;Lee, Jong Geon;Shin, Seongbeom;Han, Sang Hyun;Park, Keum Yong;Kim, Young Jun;Kim, Namgyun;Jin, Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.119-125
    • /
    • 2020
  • A high Reynolds number transonic wind tunnel has been built in 2018 at Agency for Defense Development(ADD). The tunnel has a closed circuit with a 1.5m×1.5m test section and is injection driven from a 140bar air supply system. The Mach number range is 0.3-1.2 with a conventional contracting nozzle and 1.4 with a convergent-divergent contraction. The stagnation pressure range is 100-550kPa at the lowest Mach number. An AGARD-B standard model is tested in the transonic wind tunnel to obtain 6-DOF aerodynamic coefficients. The results are compared with those obtained from ADD trisonic wind tunnel and others. We verify that the transonic wind tunnel become available to develop an aircraft from the testing results.

Control the Blow-off Characteristics of Lean Premixed Flames Utilizing a Stratified Flame Concept (성층화된 화염을 이용한 희박 예혼합화염의 날림 특성 제어)

  • Lee, Wonnam;Ahn, Taekook;Nam, Younwoo
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.4
    • /
    • pp.11-20
    • /
    • 2012
  • The Blow-off characteristics of LPG/air lean pre-mixed flames were experimentally investigated using a double and a multiple concentric coflow burners. Experiments were conducted to understand the effects of recirculation motion, thermal interaction between flames, and stratified flame configuration. Here, the stratified premixed flame is a "new concept" of a flame that sequentially contains fuel rich, stoichiometric, and fuel lean reaction zones in a flame. The blow-off from a lean premixed flame was significantly suppressed with recirculation motion. The recirculation motion by itself, however, was not sufficient to prevent the blow-off when the equivalence ratio became low. The existence of a inner premixed flame could also help to prevent the blow-off of lean premixed flame; however, the blow-off suppression effect was rather diminished by weakened recirculation motion with the presence of inner flame. The inner flame could be separated from an outer flame on a multiple concentric coflow burner, causing recirculation motion as well as thermal interaction between flames to become effective; therefore, the blow-off was further suppressed. The lean premixed flame could be stabilized with a fuel rich premixed flames that was produced with the supply of fuel through an inner nozzle. The penetration of lean premixed gas from outside into the fuel stream produced a lifted rich premixed flame. Chemiluminescence images of OH, CH, and $C_2$ radicals confirmed the structure of a stratified premixed flame. The stable premixed flames could be obtained at the very fuel lean condition by applying the stratified premixed flame concept.