• Title/Summary/Keyword: Air source

Search Result 2,258, Processing Time 0.03 seconds

A Study on the Reliability of District Heat Measuring Devices for Ground Source Heat Pump Systems (지열원 히트펌프 시스템에 적용되고 있는 난방용 적산열량계의 신뢰성 평가에 관한 연구)

  • Kang, Hee Jeong;Lee, Hyun Su;Jang, Myung Hun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • A ground source heat pump system should be equipped with devices to measure the generated heating or cooling heat amount in Korea. Generally, the heat measuring devices have been developed to estimate consumed heat amount in residential or commercial buildings from a central air-conditioning system or a district heating system. In this study, two representive heat measuring devices used for buildings were selected, and the accuracy of them were experimentally estimated at the ground source heat pump operating conditions. The obtained heat amounts from the heat measuring devices were deviated within 4.3% comparing with the precise values calculated from an accredited test facility. Even though the accumulated heat amount values of the heat measuring devices had a small difference comparing with the precise values, the temperatures of heat measuring devices showed greatly different values comparing with the precise temperature. Therefore, it is highly recommended to develop the heat measuring devices which is appropriate for the ground source heat pump systems.

A Study on the Performance Improvement of a Simultaneous Heating and Cooling Water Source Heat Pump System by Controlling of the Refrigerant Flow Rate in an Outdoor Unit (수열원 냉난방 동시형 히트펌프 시스템의 실외 열교환기 유량제어를 통한 성능개선에 관한 연구)

  • Bae, Heung Hee;Lee, Dong Hyuk;Lee, Sanghun;Kim, Byengsoon;Ahn, Young Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.3
    • /
    • pp.131-136
    • /
    • 2013
  • The present study has conducted cycle design and control technology of a water source VRF heat pump system. Previously, study of a simultaneous heating and cooling in an air source VRF heat pump system has been conducted. However, performance data and design methods for simultaneous heating and cooling in a water source VRF heat pump system are limited in the literature, due to various system parameters and operating conditions. In this study, the operating characteristics and performances of a simultaneous heating and cooling heat pump system are carried out, in simultaneous operation modes. Control logics of an EEV are developed for flow rate control to the outdoor unit, and are verified. When the control logics are applied, the simultaneous cooling and heating performances are sufficiently achieved, and system COPs are increased by up to 23.4%.

Experimental Study on the Cooling Performance of Vertical Closed Loop Water to Water Ground Source Heat Pump System (물 대 물 방식 수직 밀폐루프 지열원 히트펌프 시스템의 냉방성능에 대한 실험적 연구)

  • Hong, Boo-Pyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.58-63
    • /
    • 2014
  • A vertical closed loop ground source heat pump (GSHP) is used to produce heat from the low-grade energy source such as the outside air and ground source. It is known that a heat pump system type has better efficiency comparing to the electric heating system. This study only demonstrates that the vertical closed loop GSHP system is a feasible choice for space cooling of air conditioning. The coefficient of performance (COP) is the ratio of heat output to work supplied to the system in the form of electricity. For the vertical closed loop GSHP system in a cooling mode, the COP is the most commonly used way for judging the efficiency. For the purpose of this experiment, vertical closed loop GSHP system was installed in the laboratory and the experiment was executed. As a result, an average COP of vertical-closed loop GSHP system was 3.62 when the outside average temperature was $33^{\circ}C$.

Economical Analysis of a Small Capacity Heat Pump utilizing Heat Sources of Air, Geothermal and Underground Water Tank using Dynamic Simulation (동특성 시뮬레이션을 이용한 공기, 지열 및 지하 저수조 열원 소형 열펌프의 경제성 분석)

  • Yang, Chul-Ho;Kim, Youngil;Chung, Kwang-Seop
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.4
    • /
    • pp.17-23
    • /
    • 2012
  • Due to reinforcement of international environment regulation and high oil prices, interest in renewable energy is growing. Countries participating in UNFCCC are continuously putting efforts in reducing greenhouse gas after enforcing Kyoto Protocol into effect on Feb, 2005. Energy used in buildings, which relies heavily on fossil fuel accounts for about 24% of total energy consumption. In this study, air, geothermal and water source heat pump systems for an 322 $m^2$ auditorium in an office building is simulated using TRNSYS version 17 for comparing energy consumptions. The results show that energy consumptions of air, geothermal and water source heat pumps are 14,485, 10,249, and 10,405 kWh, respectively. Annual equal payments which consider both initial and running costs become 5,734,521, 6,403,257 and 5,596,058 Won. Thus, water source heat pump is the best economical choice.

A Study on The Characteristics of Heat Pump Heating System Utilizing Heat Storage Tank (축열수조를 이용하는 열펌프식 난방의 특성에 관한 연구)

  • Kim H.K.;Lee G.Y.;Park M.S.;Hwang I.S.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.4
    • /
    • pp.392-405
    • /
    • 1987
  • A study of appling solar assisted heat pump heating system to Korean climatic charac-teritics has been undertaken through computer simulation using TRNSYS (A Transient System Simulation Program). It is insufficient for heating system composed of each of solar and heat pump system to supply heat met with heating load. So SAHP (Solar Assisted Heat Pump) heating systems which combined solar system with heat pump system are analized using the standard weather data of Korea. And SAHP heating systems are categorized into the series system in which the solar storage is used as the source for the heat pump, the parallel system in which ambient air is used as the source for the heat pump, and the dual source system in which the storage or ambient is used as the source depending on which source yields the lowest work input. These combined system are better than each of solar and heat pump heating system in view of thermal performance, and parallel system is most effective among these combined systems.

  • PDF

Analysis of Performance Changes in Ground source Heat Pump and Air Source Heat Pump According to Global Warming (지구온난화에 따른 지열히트펌프와 공기열히트펌프의 성능 변화 분석)

  • Jin Yeong Seo;Se Hyeon Ham;Dongchan Lee
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.4
    • /
    • pp.8-17
    • /
    • 2023
  • The air temperature is gradually increasing owing to global warming, especially in summer, therefore, the performance of an air source heat pump (ASHP) is expected to be decreased. Accordingly, the performance gap between the ASHP and ground source heat pump (GSHP) should be increased, however, the quantitative comparison has not been yet investigated. In this study, impact of global warming on the performance of the ASHP and GSHP is investigated based on the climate data for 1930, 1980, and 2030. The coefficient of performance (COP) as well as annual power consumption of the ASHP and GSHP are compared and analyzed. In the case of COP, the COP of GSHP hardly changes over the years owing to the constant ground temperature, while that of ASHP decreases by 3.7% for cooling and increases by 0.71% for heating. In the case of annual power consumption, the cooling and heating power consumption of GSHP increases by 12.69% and decreases by 15.58%, respectively, over the year owing to the changes in heating and cooling loads. As for the ASHP, the cooling and heating power consumption increases by 16.64% and decreases by 17.8%, respectively. For a more accurate comparison, power consumption ratio is introduced and shows that total annual power consumption of the GSHP to ASHP decreased from 68% in 1930 to 65% in 2030. Therefore, as global warming accelerates, the effect of reducing power consumption by using GSHP compared to ASHP is expected to be increasing.

Verification experiment of a ground source multi-heat pump at heating season (지열원 멀티 히트펌프의 동절기 난방성능에 관한 실증 연구)

  • Choi, Jong-Min;Lim, Hyo-Jae;Kang, Shin-Hyung;Choi, Jae-Ho;Moon, Je-Myung;Kwon, Young-Seok;Kwon, Hyung-Jin;Kim, Rock-Hee
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.52-57
    • /
    • 2009
  • This paper describes the multi-heat pumps applied in an ground source heat pump system for an actual building. The performance of a ground source multi-heat pump installed in the field was investigated at heating season. The average COP of the systems with single U-tube and double tube type GLHXs were 4.8 and 5.0, respectively. It is needed to investigate the long term performance of double tube type GLHX, because the reduction of inlet temperature of OD HX for this GLHX was larger than it for U-tube GLHX.

  • PDF

Economic Feasibility of Various HVAC Systems for Commercial Building and Comparison of Energy Tariffs between Korea and USA (업무시설용 건물 적용 복합 지열원 공조시스템의 경제성 평가 및 한미 요금 비교)

  • Koh, Jae-Yoon;Park, Yool;Seo, Dong-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.9
    • /
    • pp.599-607
    • /
    • 2008
  • In this study, air conditioning systems include ground source heat pump (GSHP), are evaluated for economic feasibility. The building is modeled an air conditioned for 280kW scale. This analysis is compared with the energy tariff programs of Korea and USA. The objectives of this paper are to evaluate the cost-effectiveness of the GSHP and combined system using Life-Cycle Cost (LCC) analysis, and to carry out the sensitivity analysis of key parameters. The paper considered the cases including the base case of air source heat pump and the other two alternates for comparisons. The combined system is not only a cost-effective way to the low energy consumption but also a way to avoid a high initial investment. The variations of initial investment and energy rates give a significant effect on the total LCC and payback period.