• Title/Summary/Keyword: Air side heat transfer coefficient

Search Result 69, Processing Time 0.033 seconds

Experimental study of Heat Transfer and Pressure Drop Characteristics for the Welded Plate Heat Exchanger (용접형 판형 열교환기의 열전달 및 압력강하 특성에 관한 실험적 연구)

  • Jeong, Jong-Yun;Kim, Sung-Soo;Kang, Yong-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.419-424
    • /
    • 2008
  • Heat transfer and pressure drop characteristics of welded plate heat exchanger are studied to apply it for the solution heat exchanger of 210RT absorption system. This study quantifies the effect of mass flow rate and strong solution concentration on the heat transfer coefficient and pressure drop in the plate heat exchanger. The concentration of weak solution is fixed at 55% and the strong solution varies 55%, 57%, and 59% in mass. The results show that the overall heat transfer coefficient and pressure drop increase linearly with increasing Reynolds number. It is also found that the heat transfer coefficient of hot side increases with increasing the concentration of strong solution while the strong solution concentration has no effect on heat transfer coefficient of cold side.

  • PDF

Fouling Reduction Characteristics of a Fluidized Bed Heat Exchanger for Flue Gas Heat Recovery (연도가스 열회수용 순환유동층 열교환기의 오염저감특성)

  • 이금배;전용두
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.8
    • /
    • pp.770-777
    • /
    • 2004
  • Fouling and cleaning tests are performed for a uniquely designed 7,000 ㎉/hr fluidized bed heat exchanger for exhaust gas heat recovery. Fuel rich condition is maintained in the combustor for a limited time period to generate soot that is to be deposited on the heat transfer surfaces (fouling) and 600 Um glass beads are circulated inside the heat exchanger system for cleaning and enhancing the heat transfer performance. According to the present experimental study, performance degradation mode could be monitored and the effect of particle circulation on the heat transfer improvement could be identified. Through the present study, it is demonstrated that circulating particles contribute not only to the fouling reduction in gas side, but also to the heat transfer enhancement of the unit, while other possible aging factors including water side corrosion seemed to contribute to the accumulated performance deterioration.

Local Heat Transfer Coefficients for Reflux Condensation Experiment in a Vertical Tube in the Presence of Noncondensible Gas

  • Moon, Young-Min;No, Hee-Cheon;Bang, Young-Seok
    • Nuclear Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.486-497
    • /
    • 1999
  • The local heat transfer coefficient is experimentally investigated for the reflux condensation in a countercurrent flow between the steam-air mixture and the condensate, A single vertical tube has a geometry which is a length of 2.4m, inner diameter of 16.56mm and outer diameter of 19.05mm and is made of stainless steel. Air is used as a noncondensible gas. The secondary side has a shape of annulus around vertical tube and the lost heat by primary condensation is transferred to the coolant water. The local temperatures are measured at 11 locations in the vertical direction and each location has 3 measurement points in the radial direction, which are installed at the tube center, at the outer wall and at the coolant side. In three different pressures, the 27 sets of data are obtained in the range of inlet steam flow rate 1.348∼3.282kg/hr, of inlet air mass fraction 11.8∼55.0%. The investigation of the flooding is preceded to find the upper limit of the reflux condensation. Onset of flooding is lower than that of Wallis' correlation. The local heat transfer coefficient increases as the increase of inlet steam flow rate and decreases as the increase of inlet air mass fraction. As an increase of the system pressure, the active condensing region is contracted and the heat transfer capability in this region is magnified. The empirical correlation is developed by 165 data of the local heat transfer. As a result, the Jacob number and film Reynolds number are dominant parameters to govern the local heat transfer coefficient. The rms error is 17.7% between the results by the experiment and by the correlation.

  • PDF

Heat Transfer Characteristics of the Non-Uniform Grooved Tube Considering Tube Expansion (확관을 고려한 불균일 내면가공관의 전열특성)

  • Lee, Sang-Mu;Park, Byung-Duck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.7
    • /
    • pp.553-559
    • /
    • 2012
  • A plate-fin heat exchanger is a type of heat exchanger widely used in air conditioners, and tubes and fins are tightly assembled by the mechanical expansion process of tubes. The tube expansion process deforms the grooves inside the tube, and the groove shapes also affect the adhesion between tubes and fins. In this study, the adhesion and heat transfer performance affected by the tube expansion of the non-uniform groove shape tube with different heights are investigated by both analysis and experiments. From the analysis method, it was shown that the contact pressure of non-uniform groove tube is higher than that of the uniform groove tube, and the most appropriate high groove number of the non-uniform groove tube is designed for the maximum contact pressure. From the experimental results, the decreasing rate of the condensation heat transfer coefficient is smaller in the non-uniform groove tube with different heights, compared to the conventional uniform groove tube. Also, the air-side heat transfer coefficient of the non-uniform groove tube with different heights is higher than that of the uniform groove tubes.

An Experimental Study on Air-side Performance of Fin-and-Tube Heat Exchangers with Slit Fin

  • Chang, Keun-Sun;Phan, Thanh-Long
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.627-632
    • /
    • 2006
  • An experimental study is conducted to investigate the effect of the tube row and fin spacing on the air-side heat transfer and friction characteristics of fin-tube heat exchangers with slit fin pattern. A total of twelve samples of fin-tube heat exchangers with the nominal tube diameter of 7 mm, transverse tube pitch of 19 mm and longitudinal tube pitch of 12.5 mm are tested. The thermal fluid measurements are made using a psychometric calorimeter. The raw data are reduced to the desired heat transfer coefficient in terms of j-factor and friction factor of f for various frontal air velocities, fin pitches and number of tube rows.

  • PDF

Characteristics of Fin-Side Heat-Transfer and Pressure Drop in a Condenser for Automobile (자동차용 응축기의 휜 열전달 및 압력강하 특성)

  • 곽경민;이홍열
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.152-158
    • /
    • 2004
  • An experimental study was performed to determine the fin-side heat transfer and pressure drop of a condenser for automobile. Five sample with different fin height and louver angle were tested, 9mm, 8mm, 7.5mm, 5.4mm and 4.5mm. Results are presented as plot of Colburn j-factor(or heat transfer coefficients) and friction factor(or pressure drop) against the Reynolds number(or inlet air velocity) based on louver pitch, in the range of 110 to 480. The results show that both heat transfer and pressure drop on the fin are mainly affected by the louver angle in a lower range of air velocity, but, by the fin height in a higher range of air velocity. The performance of 5.4mm fin is the highest, compared to other fin sample.

Reduction of the Wet Surface Heat Transfer Coefficients from Experimental Data

  • Kim, Nae-Hyun;Sim, Yong-Sub
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.1
    • /
    • pp.37-49
    • /
    • 2004
  • Four different data reduction methods for the heat transfer coefficients from experimental data under dehumidifying conditions are compared. The four methods consist of two heat and mass transfer models and two fin efficiency models. Data are obtained from two heat exchanger samples having plain fins or wave fins. Comparison of the reduced heat transfer coefficients revealed that the single potential heat and mass transfer model yielded the humidity-independent heat transfer coefficients. Two fin efficiency models-enthalpy model and humidity model-yielded approximately the same fin efficiencies, and accordingly approximately the same heat transfer coefficients. The heat transfer coefficients under wet conditions were approximately the same as those of the dry conditions for the plain fin configuration. For the wave fin configuration, however, wet surface heat transfer coefficients were approximately 12% higher. The pressure drops of the wet surface were 10% to 45% larger than those of the dry surface.

Experimental study of performance characteristics of various fin types for fin-tube heat exchanger (휜-관 열교환기에 있어서 각종 휜 형상의 성능 특성에 관한 실험적 연구)

  • Yoon, Baek;Kim, Young-Saeng;Park, Hwan-Young;Park, Hyun-Yeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.484-491
    • /
    • 1999
  • Air side heat transfer and pressure drop for ø9.52 fin-tube heat exchanger with various types of slit and louver fins were measured, and compared with wave-slit fin. Longitudinal and transverse tube spacings of the heat exchangers are 21.65mm and 25mm respectively. Actual heat exchanger was tested using water, and the tests were performed for 2 row heat exchangers with 3 different fin spacings, 1.3, 1.5 and 1.7mm. The overall performance of the enhanced fins was evaluated by comparing heat transfer coefficient with respect to fan power.

  • PDF

Numerical Analysis for the Air-Side Convective Heat Transfer Characteristics in a Compact Heat Exchanger with Circular Tubes and Continuous Plate Fins (원형관-평판휜 형상의 밀집형 열교환기 내 공기 측대류열전달특성에 대한 수치해석)

  • Moh, Jeong-Hah;Lee, Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.994-1001
    • /
    • 2007
  • Numerical analysis has been carried out to investigate air-side convective heat transfer characteristics in a compact heat exchanger with circular tubes and continuous plate fins. Simulation results such as air velocity and temperature distributions are presented, and heat transfer coefficients are compared with previous experimental correlations. Three models of standard and RNG $k-{\varepsilon}$, and Reynolds stress are applied for turbulence model applicability. Predicted heat transfer coefficient from the models of standard and RNG $k-{\varepsilon}$ are very close to those of the heat transfer correlations while there are relatively large difference, more than 17 percentage in the result from the Reynolds stress model. From the calculated results a correlation for Colburn j factor in the compact heat exchanger system is suggested.

Local Heat Transfer Coefficients for Reflux Condensation Experiment in a Vertical Tube in the Presence of Noncondensible Gas

  • Moon, Young-Min;No, Hee-Cheon;Bang, Young-Seok
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1999.05a
    • /
    • pp.104-104
    • /
    • 1999
  • The local heat transfer coefficient is experimentally investigated for the reflux condensation in a countercurrent flow between the steam-air mixture and the condensate. A single vertical tube has a geometry which is a length of 2.4m, inner diameter of 16.56mm and outer diameter of 19.05mm and is made of stainless steel. Air is used as a noncondensible gas. The secondary side is installed in the form of coolant block around vertical tube and the heat by primary condensation is transferred to the coolant water. The local temperatures are measured at 15 locations in the vertical direction and each location has 3 measurement points in the radial direction, which are installed at the tube center, at the outer wall and at the coolant side. In three different pressures, the 27 sets of data are obtained in the range of inlet steam flow rate 1.348 -3.282kg/hr, of inlet air mass fraction 11.8 -55.0%. The local heat transfer coefficient increases as the increase of inlet steam flow rate and decreases as the decrease of inlet air mass fraction. As an increase of the system pressure, the active condensing region is contracted and the heat transfer capability in this region is magnified. The empirical correlation is developed represented with the 165 sets of local heat transfer data. As a result, the Jacob number and film Reynolds number are dominant parameters to govern the local heat transfer coefficient. The rms error is 17. 7% between the results by the experiment and by the correlation.

  • PDF