• Title/Summary/Keyword: Air pressure variation

Search Result 375, Processing Time 0.027 seconds

A Study on the Reliability Improvement of Compartment Leak Test in Surface Vessels (함정 격실기밀 평가 방안에 대한 신뢰성 향상 연구)

  • Choi, Sang-Min;Park, Dong-Kyu;Beak, Yong-Kawn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.546-551
    • /
    • 2020
  • Generally, surface vessels have many compartments for operation and living quarters, and each compartment is an important space for the ship's survivability. During ship construction, a compartment leak test is necessary and is carried out on each vessel. However, the current test method is in doubt when looking at the actual test results. The reason is that only one pressure gauge is used for the measurement to check the air, so an uncomprehended phenomenon is detected during group compartment leak tests. From this point of view, an improved test device and method are needed. In this study, a multi-channel data acquisition device with multiple pressure sensors is proposed to detect each compartment's pressure variation or pressure drop. This test is a more confidential compartment leak test than the current method, and the test device can show real-time pressure detection values of each of the pressure sensors, which are installed in each compartment, including unmanned space.

System Performance Variation for Relative Location of Pre-swirl Nozzles and Receiver Holes in Radial On-Board Injection Type Pre-swirl System (반경방향 분사방식 프리스월 시스템의 프리스월 노즐과 리시버 홀의 상대적 위치에 따른 시스템 성능변화)

  • Lee, Jonggeon;Lee, Hyungyu;Cho, Geonhwan;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.43-53
    • /
    • 2020
  • The effect of the relative location between pre-swirl nozzle and receiver hole on the performance of radial on-board injection type pre-swirl system was analyzed. In this study, tendency of the change of discharge coefficient and temperature drop efficiency were analyzed for 20 design points through the combination of 5 pre-swirl nozzle location and 4 receiver hole location. Discharge coefficient of system tended to be similar to the pressure ratio of the pre-swirl nozzle. System performance variation occurred as the flow structure in the cavity was affected by the surface, and the influence of the stationary surface is greater than that of the rotating surface. Discharge coefficient of system changed -1.39% to 1.25% and temperature drop efficiency changed -5.41% to 2.94% refer to reference design point.

Experimental Study on Artificial Supercavitation of the High Speed Torpedo (고속 어뢰의 인공 초공동 특성에 대한 실험 연구)

  • Ahn, Byoung-Kwon;Jung, So-Won;Kim, Ji-Hye;Jung, Young-Rae;Kim, Sun-Bum
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.300-308
    • /
    • 2015
  • Recently supercavitating underwater torpedo moving at high speed (over 200 knots) has been interested for their practical advantage of the dramatic drag reduction. Cavitator located in front of the torpedo plays an important role to generate a natural supercavity and control the motion of the object. Supercavity can be created artificially by injection of compressed gas from the rear of the cavitator at a relatively low speed. In this paper, we investigated physical characteristics of artificial supercavities through cavitation tunnel experiments. One of the main focuses of the study was to measure pressure inside the cavity, and examined variation of the gravity effects appearing according to different amount of injected air. It was also found that a stable supercavity could be sustained at injection rates less than that required to form the stable supercavity because of hysteresis effect.

Numerical study of heat and mass transfer around an evaporative condenser tube by multi-zone method (다중 영역법을 이용한 증발식 응축관 주위의 열 및 물질전달 해석)

  • ;;Yun, In-Chul;Yoo, Je-In
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.12
    • /
    • pp.3317-3328
    • /
    • 1995
  • The objective of the present study is to predict the characteristics of heat and mass transfer around an evaporative condenser. Numerical calculations have been performed using multi-zone method to investigate heat transfer rate and evaporation rate with the variation of inlet condition(velocity, relative humidity and temperature) of the moist air, the flow rate of the cooling water and the shape of the condenser tube. From the results it is found that the profile of heat flux is the same as that of evaporation rate since heat transfer along the gas-liquid interface is dominated by the transport of latent heat in association with the vaporization(evaporation) of the liquid film. The evaporation rate and heat transfer rate is increased as mass flow rate increases or relative humidity and temperature decrease respectively. But the flow rate of the cooling water hardly affect the evaporation rate and heat flux along the gas-liquid interface. The elliptic tube which the ratio of semi-minor axis to semi-major axis is 0.8 is more effective than the circular tube because the pressure drop is decreased. But the evaporation rate and heat flux shown independency on the tube shape.

Study on Performance of a Floating-Type OWC Chamber in Regular Waves (부유식 OWC 챔버의 파랑중 거동특성 연구)

  • 홍도천;현범수;홍시영
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.43-51
    • /
    • 1992
  • The hydrodynamic performance of a floating-type OWC (Oscillating Water Column) chamber is studied numerically and experimentally in this study. The numerical approach based on two-dimensional linear theory of floating wave absorber was attempted to design an efficient wave energy absorber, while model test was performed in a wave basin to test a performance of designed model and validate the reliability of developed numerical code. The focus of study is placed mainly on the experimental study to evaluate the principal characteristics of the designed OWC chamber in regular waves. The effects of the variation of wave height on OWC device and of air pressure inside chamber are also presented. Finally, the measured results were compared with computed ones, and it was shown that the designed chamber works with high efficiency $(\eta_H>1$ over most of wave lengths covered by present study. It is therefore concluded that the developed code is capable of being successfully employed to design OWC chambers at various ocean environments, even though there exist some minor discrepancies between measured and computed results.

  • PDF

On the Warming Effects due to Artificial Constructions in a Large Housing Complex (대규모 주택단지내의 인공구조물에 의한 승온화효과에 관한 연구)

  • 김해동;이송옥;구현숙
    • Journal of Environmental Science International
    • /
    • v.12 no.7
    • /
    • pp.705-713
    • /
    • 2003
  • In mid-August 2002, under clear summer pressure patterns, we carried out an intensive meteorological observation to examine the warming effects due to artificial constructions in a large housing complex. We set an automatic weather system(AWS) at two places in a bare soil surface within a limited development district and an asphalt surface within a large apartment residence area, respectively. As a result of observation, it became clear that the difference of the surface air(ground) temperature between the bare soil surface and its peripheral asphalt area reached about 4$^{\circ}C$(13$^{\circ}C$) at the maximum from diurnal variation of surface temperatures on AWS data. Through the heat balance analysis using measurement data, it became clear that the thermal conditions at two places are dependent on the properties of surface material. The latent heat flux over the bare soil surface reached to about 300 W/㎡, which is more than a half of net radiation during the daytime. On the other hand, it was nearly zero over the asphalt surface. Hence, the sensible heat flux over the asphalt surface was far more than that of the bare soil surface. The sensible heat flux over the asphalt surface showed about 20∼30 W/㎡ during the night. It was released from asphalt surface which have far more heat capacity than that of bare soil surface.

The Study on the Influence Analysis of Shimmy&Shake due to Tire Design Parameters (타이어 설계인자별 Shimmy&Shake 영향도 분석에 관한 연구)

  • Bae, Chul-Yong;Kwon, Seong-Jin;Kim, Chan-Jung;Lee, Bong-Hyun;Koo, Byoung-Kook;Rho, Guck-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.415-420
    • /
    • 2007
  • The objective of this study analyzes the influence of shimmy & shake phenomena due to tire design parameters which are RFV(radial force variation), DB(dynamic balance), RRO(radial run out) and air pressure. These parameters are inspection items for Q.C. after tires are manufactured. In order to analyze these parameters on this study, vehicle driving tests were achieved. The test modes are two type which are constant speed and coast-down driving. On this tests the dynamic characteristics of shimmy & shake are measured by the 3-axises accelerometers at the various positions that are knuckle(left & right), rack pinion, seat and steering wheel. In according to analyzed results, the longitudinal vibration of knuckle parts affects the lateral vibration of rack pinion and this vibration affects the lateral vibration of steering wheel that is the shimmy phenomena. Also the over and under DB by comparison with normal DB and the increment of RRO affect the occurrence of shimmy & shake phenomena.

  • PDF

Online Load Torque Ripple Compensator for Single Rolling Piston Compressor (싱글 로터리 컴프레셔의 온라인 부하 토크리플 보상기)

  • Gu, Bon-Gwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.457-462
    • /
    • 2014
  • Given their low cost, single rolling piston compressors (SRPC) are utilized in low-power room air-conditioning systems. The SRPC cycle is composed of one compression and discharge process per mechanical rotation. The load torque is high during the compression process of the refrigerants and low during the discharge process of the refrigerants. This load torque variation induces a speed ripple and severe vibration, which cause fatigue failures in the pipes and compressor parts, particularly under low-speed conditions. To reduce the vibration, the compressor usually operates at a high-speed range, where the rotor and piston inertia reduce the vibration. At a low speed, a predefined feed-forward load torque compensator is used to minimize the speed ripple and vibration. However, given that the load torque varies with temperature, pressure, and speed, a predefined load torque table based on one operating condition is not appropriate. This study proposes an online load torque compensator for SRPC. The proposed method utilizes the speed ripple as a load torque ripple factor. The speed ripple is transformed into a frequency domain and compensates each frequency harmonic term in an independent feed-forward manner. Experimental results are presented to verify the proposed method.

A Study on the Lean Combustion Characteristics with Variation of Combustion Parameter in a Gasoline Direct Injection Engine (직접분사식 가솔린 엔진의 연소제어인자에 따른 희박연소 특성 연구)

  • Park, Cheol-Woong;Oh, Jin-Woo;Kim, Hong-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.39-45
    • /
    • 2012
  • Today gasoline engines for vehicular application are not only faced with stringent emission regulation but also with increasing requirements to better fuel economy, while guaranteeing power density. The spray-guided type gasoline direct injection (GDI) engine has an advantage of improved thermal efficiency and lower harmful emissions. Centrally mounted high pressure injector and adjacent spark plug allow stable lean combustion due to the flexible mixture stratification. In the present study, the performance and emissions characteristics of developed spray-guided type GDI combustion system were evaluated at various excess air ratio conditions. The specific fuel consumption and nitrogen oxides ($NO_x$) emissions were reduced due to the achievement of stable lean combustion under flammability limit. Multiple injection strategy was not helpful to improve fuel consumption while further reduction of $NO_x$ emissions was possible.

Operating Characteristics of Dual-fuel Combustion with DME and Gasoline in a Compression Ignition Engine (압축착화 엔진에서 DME-가솔린 혼소 운전 특성에 관한 연구)

  • Kim, Kihyun;Bae, Choongsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.157-164
    • /
    • 2014
  • Dual fuel combustion strategy with di-methl ether (DME) and gasoline was tested in a compression ignition engine. Characteristics of combustion and emissions were analyzed with the variation of engine operating parameters such as fuel proportion, DME injection timing, intake oxygen concentration, DME injection pressure and so forth. Gasoline was injected into the intake manifold to form the homogeneous mixture with intake charge and DME was injected directly into the cylinder at the late compression stroke to ignite the homogeneous gasoline-air mixture. Dual fuel combustion strategy was advantageous in achievement of higher thermal efficiency and low NOx emission compared with DME single fuel combustion. Higher thermal efficiency was attributed to the lower heat tranfer loss from the decreased combustion temperature since the amount of lean premixed combustion was increased with the larger amount of gasoline proportion. Lower NOx emissions were also possible by lowering the combustion temperature.