• Title/Summary/Keyword: Air porosity

Search Result 329, Processing Time 0.024 seconds

A Study on the Effect of the Biodegradability of the Composting Bulking Agent in the Swine Manure-Composting (충진재의 생분해도가 돈분 퇴비화 효율에 미치는 영향에 관한 연구)

  • 김성균;최경호;정문식
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.2
    • /
    • pp.35-43
    • /
    • 1997
  • A study on the effect of the biodegradability of the composting bulking agent in the swine manurecomposting was carried out in a batch system. The purpose of this study is to prove the effect of the biodegradability of the composting-bulking agent on the efficiency of the composting. In this study, it is the lignins: Klason-Lignin in the volatile solid that the index of the biodegradability of the composting-material mixes which are pig manure-rice straw pig manure-sawdusts pig manuremixture of rice and ricestraw (2:1) pig manure-mixture of rice and sawdust (1:1). It was carried out in the same condition (moisture contents, air supply rate, C/N ratio, initial input weight, porosity-structure) except the biodegradability of the raw material mixes. One of the results from this study is that the biodegradability of the bulking agent in the sense of the VS lignin content is not an insignificant factor in composting reaction. The less contents of the lignin in VS, the more efficiencies of the cornposting reaction in use of these parameters for the degree of the reaction: temperature, the trends of the ash contents, the change pattern of the C/N ratio. Under some assumptions, it is able to induce rough model on the relation of the VS lignin contents with the efficiency of the degradability. In this model, the biodegradability of the bulking agent is not an insignificant factor however, it is flexible within some degrees of range.

  • PDF

Prediction of Time-dependent Moisture Diffusion Coefficient in Early-age Concrete (초기재령 콘크리트의 시간 의존적인 수분확산계수 예측에 관한 연구)

  • Kang, Su-Tae;Kim, Jin-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.141-148
    • /
    • 2005
  • The nonlinear humidity distribution occurs due to the moisture diffusion when a concrete is exposed to an ambient air. This nonlinear humidity distribution induces shrinkage cracks on surfaces of the concrete. Because shrinkage cracks largely affect the durability and serviceability of concrete structures, the moisture diffusion in concrete must be investigated. The purpose of this paper is to propose a model of the moisture diffusion coefficient that governs moisture diffusion within concrete structures. To propose the model, numerical analysis was performed with several experiments. Because the moisture diffusion coefficient is changed with aging, especially at early ages, the proposed model includes aging effect by terms of the porosity as well as the humidity of concrete.

Friction-wear Characterization and Fabrication of Carbon/Carbon Composite via Mesophase Pitch (메조페이스 핏치계 탄소/탄소 복합재료의 제조 및 마찰 마모특성)

  • 박종규;이진용;하헌승;임연수;이승구
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.974-980
    • /
    • 1998
  • This study is concerned with the production of carbon fiber reinforced carbon(C/C) with polyaromatic mesophase pitch as matrix precursor and with the investigation of friction-wear characteristics in ambient air using a constant speed type of friction tester. The main problem in using the polyaromatic mesophase as the matrix precursor is the high viscosity which may limit the complete impregnation of the fiber preform in the vacuum. To solve these problems two dimensional carbon fiber fabrics were infiltrated with meso-phase pitch in the pitch impregnator. After the impregnation and the heat treatment process. C/C com-posites were characterized by density porosity to monitor the influence of high pressure and temperature. It showed that the bulk density was increased and the apparent porosity and the density increasing rate was reduced as repeating the impregnation the carbonization and the heat treatment. The friction-wear charac-teristics of C/C composites were investigated by measuring the average friction coefficient and the specific wear rate as functions friction speed and friction pressure using a constant speed type of friction tester. C/C composite4s showed the average friction coefficient to be reduced as increasing the friction speed and the friction pressure.

  • PDF

Geotechnical Diagnosis System for Preventing a Ground Subsidence Relating with Cultural Heritage (석조문화재관련 지반침하 방지를 위한 지반진단시스템)

  • Kim Man-Il;Yang Dong-Yoon;Lee Kyu-Shik;Jeong Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.16 no.3 s.49
    • /
    • pp.301-306
    • /
    • 2006
  • Damages of cultural properties is caused by subsidence of foundation relating stone structures. To prevent of these structures, ground monitoring should be achieved certainly. Representative ground subsidence cause is saturated and unsaturated condition that is produced repeatedly by groundwater level fluctuations. It controls role that decrease porosity or effective porosity of soil media. Estimation of physical properties can predict from reaction of dielectric constant. Variations of dielectric constants are measured from physical characteristics change of pore, soil particle, air and water which are consisted to ground. Therefore, ground subsidence monitoring is thought that quantitative measurement is available using dielectric response of media.

Characteristics of the Non-electric Water Purification System Using Onggi Filter (옹기 필터를 이용한 무 전원 정수 장치에 관한 연구)

  • Wi, In-Hee;Shin, Dong-Wook;Han, Kyu-Sung;Kim, Jin-Ho;Cho, Woo-Seok;Hwang, Kwang-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.332-336
    • /
    • 2014
  • A non-electric water purification system using the Korean traditional ceramic ware Onggi, was demonstrated as an appropriate technology to solve water shortages in under developed regions. Generally, Onggi is produced using large size raw materials that are sintered at low temperature, resulting in a porous body that shows air and water permeability. An Onggi filter was prepared using a spinning wheel with the addition of rice bran to the body to increase porosity. The porosity of the obtained Onggi filter was 25.1%; the water permeability was 85.1 $L/m^2h$. Turbidity and TDS of the purified water using Onggi filter were decreased by 97.7% and 29.1%, respectively.

A Basic Study for Improvement of Performance of Ice Thermal Storage in Ice Storage Tank (빙축열조 성능향상에 관한 연구)

  • Park, J.W.;Lee, W.S.
    • Solar Energy
    • /
    • v.19 no.4
    • /
    • pp.11-20
    • /
    • 1999
  • The study on ice thermal storage system is to improve total system performance and increase the economical efficiency in actual air-conditioning facilities. To obtain the high charging and discharging efficiencies in ice thermal storage system, the improvement of thermal stratification is essential, therefore the process flow must be piston flow in the cylindrical type. In the influence of the inlet port type, the inflowing water in the distributor type diffuses through the whole storage tank more than in the slot type. In case of the flow process in the ice storage tank, the upward flow type in the charging process and the downward flow type in the discharging process make the stratification well, thereby the loss of energy wored be smaller. The influence of the inlet temperature difference and the change of the inlet flow rate is intensive when the temperature difference is larger, the flow rate is smaller in case of charging and the results are opposite in case of discharging with the reason that the good coduction condition. The total effeciency of the ice thermal storge system is 73% on condition that the porosity in the thermal storage tank is 0.55. This result shows that cylinderical ice storage tank has better storage capacity than rectangular type in case of the same porosity.

  • PDF

A Study on the Creation of Porosity in Al Alloy(AA2014) Large Rod Preforms by Spray Forming (분무성형법에 의한 Al 합금(AA2014) 대형봉상성형체 제조시 기공발생에 관한 연구)

  • Shin, Don-Soo;Yoon, Eui-Park
    • Journal of Korea Foundry Society
    • /
    • v.17 no.5
    • /
    • pp.494-501
    • /
    • 1997
  • In order to manufacture large rod preforms of 2014 Al alloy with a good mechanical property by spray forming method, it was spray-formed at a droplet temperature of $715^{\circ}C$, a droplet flight distance of 400mm, and a spraying angle of $35^{\circ}$. The rod preforms were extruded at $397^{\circ}C$ with the die temperature of $420^{\circ}C$ under the hot extrusion ratio 21:1 and T6 heat treatment was performed. The 2014 Al alloys cast by hot top process were also extruded and heat-treated at the same condition as a reference material. Microstructural observation and tensile test were carried out to investigate the effects of extrusion on microstructure and mechanical property of spray-formed Al alloy. Spray-formed Al alloys had many porosities due to inappropriate process conditions such as long droplet flight distance and low droplet temperature but have fine equiaxed grain. These porosities were reduced with decreasing in grain size by hot extrusion. Ultimate tensile strength and yield strength of spray formed-extruded 2014 Al alloy were inferior to those of the normal cast-extruded 2014 Al alloy, but elongations were superior. The control of porosity was important to get spray formed preform with a good mechanical property.

  • PDF

Precipitation Decreases Methane Uptake in a Temperate Deciduous Forest (온대 낙엽 활엽수림에서의 강수량에 따른 메탄 흡수 감소)

  • Khokhar, Nadar Hussain;Park, Jae-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.1
    • /
    • pp.24-34
    • /
    • 2019
  • Soil moisture regulates the fate of methane ($CH_4$) in forest soil via biological and chemical processes. The instant effect of variable precipitation on $CH_4$ uptake is, however, unclear in the forest ecosystems. Here, we measured $CH_4$ flux in a temperate forest soil immediately after variable volume of water applications equivalent to 10, 20 40, and $80mm\;m^{-2}day^{-1}$ precipitation. $CH_4$ uptake was significantly higher when the water was not applied. The $CH_4$ uptake decreased significantly with increasing water application. $CH_4$ uptake was linked with air filled porosity and water filled porosity. $CH_4$ uptake response to actual precipitation intensity was in agreement with $CH_4$ uptake results in this study. $CH_4$ uptake decreased 55% at highest precipitation intensity. Since annual $CH_4$ flux is calculated with interpolation of weekly or biweekly field observations, instant effect of precipitation can mislead the interpolated annual results.

NH3 sensing properties of porous CuBr films prepared by spin-coating (스핀 코팅법으로 제작한 다공성 CuBr 필름의 암모니아 감응특성)

  • Kim, Sang-Kwon;Yu, Byeong-Hun;Yoon, Ji-Wook
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.451-455
    • /
    • 2021
  • Porous copper bromide (CuBr) films are highly advantageous for detecting ammonia (NH3). The fabrication of porous CuBr films requires complex high-temperature processes or multistep processes. Herein, we report the uncomplicated preparation of porous CuBr films by a spin-coating method and the films' excellent NH3 sensing properties. The porous films were prepared by spin-coating 100, 150, and 200 mM CuBr solutions, and then dried in a vacuum oven for 2 h. All the films showed a high NH3 response; in particular, the film prepared using a 100 mM CuBr solution showed an extremely high response (resistance ratio = 852) to 5 ppm NH3. The film also showed fast response and recovery times, 272 s and 10 s respectively, even at room temperature. The outstanding NH3 sensing characteristics were explained in relation to the porosity and thickness of the prepared films. The high-performance NH3 sensors used in this study can be used for both indoor air quality and environmental monitoring applications.

A shooting method for buckling and post-buckling analyses of FGSP circular plates considering various patterns of Pores' placement

  • Khaled, Alhaifi;Ahmad Reza, Khorshidvand;Murtadha M., Al-Masoudy;Ehsan, Arshid;Seyed Hossein, Madani
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.419-432
    • /
    • 2023
  • This paper studies the effects of porosity distributions on buckling and post-buckling behaviors of a functionally graded saturated porous (FGSP) circular plate. The plate is under the uniformly distributed radial loading and simply supported and clamped boundary conditions. Pores are saturated with compressible fluid (e.g., gases) that cannot escape from the porous solid. Elastic modulus is assumed to vary continuously through the thickness according to three different functions corresponding to three different cases of porosity distributions, including monotonous, symmetric, and asymmetric cases. Governing equations are derived utilizing the classical plate theory and Sanders nonlinear strain-displacement relations, and they are solved numerically via shooting method. Results are verified with the known results in the literature. The obtained results for the monotonous and symmetric cases with the asymmetric case presented in the literature are shown in comparative figures. Effects of the poroelastic material parameters, boundary conditions, and thickness change on the post-buckling behavior of the plate are discussed in details. The results reveal that buckling and post-buckling behaviors of the plate in the monotonous and symmetric cases differ from the asymmetric case, especially in small deflections, that asymmetric distribution of elastic moduli can be the cause.