• Title/Summary/Keyword: Air pollutants concentration

Search Result 613, Processing Time 0.033 seconds

Urinary 1-Hydroxypyrene and 2-Naphthol as a Biological Exposure Markers of Total Suspended Particulate in the General Population (일반 인구집단에 대한 대기중 총먼지의 생물학적 노출지표로서 요중 1-hydroxypyrene 및 2-naphthol의 유용성)

  • Kang, Jong-Won;Kim, Heon;Kang, Dae-Hee;Lee, Chul-Ho;Cho, Soo-Hun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.33 no.3
    • /
    • pp.306-312
    • /
    • 2000
  • Background : Polycyclic aromatic hydrocarbons (PAH) are well known environmental pollutants. The measurement of PAH in ambient air is not commonly used, because it is quite difficult to perform and is unreliable. Using biomarkers of PAH can be an alternative approach to this problem. The PAH in ambient air is absorbed in particulate matter. Total suspended particulate(TSP) or particulate matter of less than $10{\mu}m$ in diameter (PM10) can be easily measured. Therefore, TSP or PM10 can be used as a surrogate measurements of ambient air PAH. Objectives : We investigated whether the urinary concentration of two biomarkers of PAH, 1-hydroxypyrene (1-OHP) and 2-naphthol, could reflect the total suspended particulate in the general population. Methods : In order to exclude the effects of occupational exposure and smoking, first grade middle school students were included in this study. Four middle schools within a one kilometer boundary of ambient air monitoring stations were selected. Total suspended particulate was regarded as the marker of airborne PAH. Diet and smoking data were collected by self administered questionnaires, and spot urine samples were collected. Urinary 1-OHP and 2-naphthol were analyzed by high performance liquid chromatography. Results : The correlation between urinary 1-OHP, 2-naphthol and passive smoking was not statistically significant. The correlation between urinary 1-OHP and TSP indices was not statistically significant. The correlations between urinary 2-naphthol and TSP of two lag days, one lag day, and zero lag days were statistically significant. The statistical significance of two lag days was the strongest (p=0.001), one lag day was the next (p=0.0275), and zero lag days was the weakest (p=0.0349). Conclusion : Our results imply that the urinary concentration of 2-naphthol can be applied as a PAH exposure marker for the general population with low PAH exposure.

  • PDF

Estimation of Atmospheric Deposition Velocities and Fluxes from Weather and Ambient Pollutant Concentration Conditions : Part I. Application of multi-layer dry deposition model to measurements at north central Florida site

  • Park, Jong-Kil;Eric R. Allen
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.1
    • /
    • pp.31-42
    • /
    • 2000
  • The dry deposition velocities and fluxes of air pollutants such as SO2(g), O3(g), HNO3(g), sub-micron particulates, NO3(s), and SO42-(s) were estimated according to local meteorological elements in the atmospheric boundary layer. The model used for these calculations was the multiple layer resistance model developed by Hicks et al.1). The meteorological data were recorded on an hourly basis from July, 1990 to June, 1991 at the Austin Cary forest site, near Gainesville FL. Weekly integrated samples of ambient dry deposition species were collected at the site using triple-fiter packs. For the study period, the annual average dry deposition velocities at this site were estimated as 0.87$\pm$0.07 cm/s for SO2(g), 0.65$\pm$0.11 cm/s for O3(g), 1.20$\pm$0.14cm/s for HNO3(g), 0.0045$\pm$0.0006 cm/s for sub-micron particulates, and 0.089$\pm$0.014 cm/s for NO3-(s) and SO42-(s). The trends observed in the daily mean deposition velocities were largely seasonal, indicated by larger deposition velocities for the summer season and smaller deposition velocities for the winter season. The monthly and weekly averaged values for the deposition velocities did not show large differences over the year yet did show a tendency of increased deposition velocities in the summer and decreased values in the winter. The annual mean concentrations of the air pollutants obtained by the triple filter pack every 7 days were 3.63$\pm$1.92 $\mu\textrm{g}$/m3 for SO42-, 2.00$\pm$1.22 $\mu\textrm{g}$/m-3 for SO2, 1.30$\pm$0.59 $\mu\textrm{g}$/m-3 for HNO3, and 0.704$\pm$0.419 $\mu\textrm{g}$/m3 for NO3-, respectively. The air pollutant with the largest deposition flux was SO2 followed by HNO3, SO42-(S), and NO3-(S) in order of their magnitude. The sulfur dioxide and NO3- deposition fluxes were higher in the winter than in the summer, and the nitric acid and sulfate deposition fluxes were high during the spring and summer.

  • PDF

The Meteorological, Physical, and Chemical Characteristics of Aerosol during Haze Event in May 2003 (2003년 5월의 연무 관측시 에어로졸의 기상 · 물리 · 화학 특성)

  • Lim, Ju-Yeon;Chun, Young-Sin;Cho, Kyoung-Mi;Lee, Sang-Sam;Shin, Hye-Jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.5
    • /
    • pp.697-711
    • /
    • 2004
  • Severe haze, mist, and fog phenomena occurred in the central part of Korea during 15~25 May 2003 resulted in poor visibility and air quality. When these phenomena occurred, Korean peninsula was under the effects of anticyclone. The atmosphere was stable, and wind speed was so weak. Under this meteorological conditions, air quality was worse and worse. The characteristics of aerosol in Seoul, Incheon, and Gosan (Jeju) during this period are investigated from the $PM_{10}$. TSP concentrations and aerosol number concentrations. Concentrations of $PM_{10}$ and TSP measured at KMA increased upto 176 and 230 J.${\mu}g/m^3$ on 22 May 2003, respectively. Aerosol number concentrations of size range from 0.82 to 6.06 ${\mu}m$ increased in Seoul on 17, 19, and 21~24 May 2003, and the concentrations of $NO_2$ and $SO_2$had maximum value of 0.165 ppm at Gwanak Mt. and 0.036 ppm at Guro-dong on 23 May 2003, respectively. Result from analysis on heavy metal elements showed high concentrations of Zn, Pb, Cr, Ni, Cu, and Cd during 20~24 May 2003. This event is examined by comprehensive analyses of synoptic weather conditions, satellite images, concentrations of suspended particles and air pollutants, and heavy metal elements.

A Study on the Distribution Characteristics and Countermeasures of Concentrations of Ambient PM10 and PM2.5 in Yangju, South Korea

  • Dohun Lim;Yoonjin Lee
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.701-716
    • /
    • 2022
  • This study investigated the distribution behaviors of PM2.5 and PM10 at two air quality monitoring sites, Go-eup (GO) and Backseokeup (BS), located in Yangju City, South Korea. The amounts of emissions sources of pollutants were analyzed based on the Clean Air Policy Support System (CAPSS), and the contribution rates of neighboring cities were enumerated in Yangju. Yangju has a geological basin structure, and it is a city with mixed urban and rural characteristics. The emission concentration of particulate matter was affected by geological and seasonal factors for all sites observed in this study. Therefore, these factors should be considered when establishing policies related to particulate matter. Because the official GO and BS station sites in Yangju are both situated in the southern part of the city, the representativeness of both stations was checked using correlation analysis for the measurement of PM2.5 and PM10 by considering two more sites-those of Bongyang-dong (BY) and the Gumjun (GJ) industrial complex. The data included discharge amounts for business types 4 and 5, which were not sufficiently considered in the CAPSS estimates. Because the 4 and 5 types of businesses represent over 92.6% of businesses in this city, they are workplaces in Yangju that have a significant effect on the total air pollutant emission. These types of businesses should be re-inspected as the main discharge sources in industry, and basic data accumulation should be carried out. Moreover, to manage the emission of particulate matter, attainable countermeasures for the main sources of these emissions should be prepared in a prioritized fashion; such countermeasures include prohibition of backyard burning, supervision of charcoal kilns, and management of livestock excretions and fugitive dust in construction sites and on roads. The contribution rates by neighboring cities was enumerated between 6.3% and 10.9% for PM2.5. Cooperation policies are thought to be required with neighboring cites to reduce particulate matter.

Indoor Air Quality and Human Health Risk Assessment for Un-regulated Small-sized Sensitive Population Facilities (소규모 다중이용시설의 실내공기질 실태조사 및 건강위해성평가: 민감군 이용시설을 중심으로)

  • Shin, Hyejin;Park, Woosang;Kim, Bokyung;Ji, Kyunghee;Kim, Ki-Tae
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.4
    • /
    • pp.397-407
    • /
    • 2018
  • Objectives: The purpose of this study is to investigate human health risk assessment of indoor air pollutants at small-sized public-use facilities (e.g., daycare centers, hospital and elderly care facilities) that the susceptible population is mainly used. Methods: To assess indoor air quality (IAQ), the concentrations of indoor air contaminants such as HCHO, benzene, toluene, ethylbenzene, xylene, styrene, PM-10, CO, $NO_2$ and $O_3$ in air samples were measured according to the Indoor Air Quality Standard Method. By conducting the questionnaire survey, the major factors influencing IAQ were identified. Human health risk assessment was carried out in the consideration of type of use (user and worker) at 75 daycare centers, 34 hospitals and 40 elderly care facilities. Results: As a result of measurement of indoor air contaminants, the average concentration of HCHO and TVOCs in hospitals was higher than daycare centers and elderly care facilities, about 8.8 and 23.5% of hospitals were exceeded by IAQ standard. In human health risk assessment, for the user of daycare centers and elderly care facilities, the mean carcinogenic risk of HCHO inhalation was higher than acceptable value. Except for HCHO, other values were determined under acceptable risk. Similarly, for the worker of hospitals, the mean carcinogenic risk of HCHO inhalation was higher than acceptable value and other values were evaluated under acceptable risk. In contrast, the risk levels of other contaminants measured in elderly care facilities were acceptable. In the determination of factors influencing IAQ, the construction year, building type, ventilation time, and the use of air cleaner were identified. Conclusions: This study provides the information for establishing the plans of public health management of IAQ at small-sized public-use facilities that have not yet been placed under the regulation. The findings suggest the consideration of human health risk assessment results for the IAQ standards.

Characteristics of PM2.5 in Gwangju Evaluated by Factor Analysis (인자분석을 이용한 광주지역 초미세먼지(PM2.5)의 특성 연구)

  • Lee, Se-Haeng;Lee, Kyung-Seog;Yoon, Sang-Hoon;Yang, Yoon-Cheol;Park, Ji-Young;Bae, Seok-Jin;Lee, Dae-Haeng
    • Journal of Environmental Science International
    • /
    • v.28 no.4
    • /
    • pp.413-422
    • /
    • 2019
  • The objective of this study was to estimate the trends of air quality in the study area by analyzing monthly and seasonal concentration trends obtained from sampled data. To this aim, the mass concentrations of $PM_{2.5}$ in the air were analyzed, as well as those of metals, ions, and total carbon within the $PM_{2.5}$. The mean concentration of $PM_{2.5}$ was $22.7{\mu}g/m^3$. The mass composition of $PM_{2.5}$ was as follows: 31.1% of ionic species, 2.2% of metallic species, and 26.7% of carbonic species (EC and OC). Ionic species, especially sulfate, ammonium, and nitrate, were the most abundant in the $PM_{2.5}$ and exhibited a high correlation coefficient with the mass concentration of $PM_{2.5}$. Seasonal variations of $PM_{2.5}$ showed a similar pattern to those of ionic and metallic species, with high concentrations during winter and spring. $PM_{2.5}$ also had a high correlation with the ionic species $NO_3{^-}$ and $NH_4{^+}$. In addition, $NH_4{^+}$ was highly correlated with $NO_3{^-}$. Through factor analysis, we identified four controlling factors, and determined the pollution sources using the United States Environmental Protection Agency(U.S. EPA) pollution profile. The first factor, accounting for 19.1% of $PM_{2.5}$ was attributed to motor vehicles and heating-related sources: the second factor indicated industry-related sources and secondary particles, and the other factors indicated soil, industry-related and marine sources. However, the pollution profile used in this study may be somewhat different from the actual situation in Korea, since it was obtained from US EPA. Therefore, to more accurately estimate the pollutants present in the air, a pollution profile for Korea should be produced.

Management Strategy of Indoor Hazardous Chemicals (실내.외 통합 모델링 및 인체 위해성 평가를 통한 실내 유해화학물질의 관리 전략)

  • Shin, Yong-Seung;Lim, Hye-Sook
    • Journal of Environmental Policy
    • /
    • v.7 no.2
    • /
    • pp.67-90
    • /
    • 2008
  • The purpose of this study is to develop indoor air quality management strategies regarding indoor air pollutants while considering various factors affecting indoor pollutants concentration. The Integrated Indoor Air Quality model(IIAQ) developed by Seoul National University is used for this study. The IIAQ model is a tool that can provide an integrated view to indoor environmental pollution by simulating suggested scenarios. The results of the modeling are used to assess health risk. The concentrations that are used for the risk characterization are weighted concentrations based on the period of time in each place and existing Indoor Air Quality(IAQ) standards. The estimated concentration of toluene and formaldehyde for 10 years through the IIAQ model was 207.3 $ug/m^3$ and 36.4 $ug/m^3$ in indoors, and 55.9 $ug/m^3$ and 8.62 $ug/m^3$ in outdoors. These concentrations are lower than the existing IAQ standards. The estimated carcinogenic risk of formaldehyde is up to 1.05E-03 for the adult male group and exceeds 1E-06 for all receptor groups. This value means that cancer could affect one person out of 1000. The estimated non-carcinogenic risk of toluene was lower than 1, which means that there was no serious non- carcinogenic risk. The result of modeling shows that using low emitting indoor sources is the most effective strategy for both formaldehyde and toluene. This risk assessment suggests that the total exposure levels of existing IAQ standards may cause serious carcinogenic risk. In order to avoid uncontrolled risk, it is suggested that the current IAQ standards should be adjusted by taking into account the total amount of exposure from all exposure pathways from indoor and outdoor sources.

  • PDF

Emission Characteristics of a Passing Two-stroke Scooter using at a Roadside Measurement (도로변 측정을 이용한 2행정 스쿠터의 대기오염물질 배출특성 연구)

  • Woo, Dae-Kwang;Lee, Seung-Bok;Bae, Gwi-Nam;Lim, Cheol-Soo;Kim, Tae-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.663-671
    • /
    • 2011
  • Although a scooter is a convenient transportation means for a short distance traveling with a light package in the congested urban center, it might be one of the significant sources of air pollutants to which many people can easily be exposed during its passing-by. In this paper, we measured concentrations of gases and particles emitted from a scooter at roadside with no other traffic. To understand the characteristics of scooter emissions with respect to driving speed (idling, 30 km/h) at the roadside, total particle number concentration, particle size distribution, average surface area of particles deposited in the alveolar region, and concentrations of black carbon, CO, and $NO_x$ were measured. The concentrations of the particle number, surface area of deposited particles, CO, and $NO_x$ were highly fluctuated in the scooter's idling condition. The trends of particle number concentration, CO, and $NO_x$ generation were similar to one another. When the scooter started to move, all of $NO_x$, CO and particle number concentrations increased and after it passed by at the speed of 30 km/h, the concentration peaks of the particles and gases appeared at the same time. Unimodal size distribution with ~70 and ~93 nm mode diameters was observed for the idling and cruising condition, respectively. From this work, we found that emission from a passing vehicle could be characterized using a roadside monitoring technique.

Comparison and analysis of prediction performance of fine particulate matter(PM2.5) based on deep learning algorithm (딥러닝 알고리즘 기반의 초미세먼지(PM2.5) 예측 성능 비교 분석)

  • Kim, Younghee;Chang, Kwanjong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.7-13
    • /
    • 2021
  • This study develops an artificial intelligence prediction system for Fine particulate Matter(PM2.5) based on the deep learning algorithm GAN model. The experimental data are closely related to the changes in temperature, humidity, wind speed, and atmospheric pressure generated by the time series axis and the concentration of air pollutants such as SO2, CO, O3, NO2, and PM10. Due to the characteristics of the data, since the concentration at the current time is affected by the concentration at the previous time, a predictive model for recursive supervised learning was applied. For comparative analysis of the accuracy of the existing models, CNN and LSTM, the difference between observation value and prediction value was analyzed and visualized. As a result of performance analysis, it was confirmed that the proposed GAN improved to 15.8%, 10.9%, and 5.5% in the evaluation items RMSE, MAPE, and IOA compared to LSTM, respectively.

An Assessment of Environmental Carrying Capacity by Analyzing the Emission and Concentration of Urban Atmospheric Pollutants (대기오염을 고려한 도시의 환경적 수용력 산정 연구)

  • Lee, Kwang-Ho;Jeong, Yeun-Woo
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.517-528
    • /
    • 2011
  • Indiscreet developments cause environmental problems in major cities of Seoul Metropolitan Area. Among the environmental problems, the air pollution leads the citizens' physical and economic damages. Therefore, it needs to predict how much air pollutant which is emitted from human activities can be carried by urban environment, then to examine the reasonable level of urban development This study assumed that the air pollution is represented differently by the amount of emission. With the assumption, the acceptable air pollutant emission which keeps the air quality under the environmental standard is estimated, then the proper population is calculated in the case of Gwacheon, Gyeonggi. The result is as follow: First, air pollution concentrations of CO, $NO_2$, $SO_2$ which are estimated by using IDW interpolation of GIS don't excess the air environmental standard. Second, the result of correlation analysis between air pollutant emission and air pollution concentration shows that CO and $NO_2$ has high correlationship with total source of pollution and linear source of pollution, and $SO_2$ with linear source of pollution. Third, the results of regression analysis show that the acceptable population is bigger that the real population in the case of CO, and with the estimation of $NO_2$ and $SO_2$, the current population in the urban center and boundaries where the residential and commerce land uses are concentrated is bigger than the acceptable population. The consequence of this study is that the estimation of carrying capacity can suggest the acceptable human activities which keep the air quality under the environmental standard. This can leads the sustainable urban development by control the human activities under the carrying capacity of urban environment.