• Title/Summary/Keyword: Air pipe resonance

Search Result 12, Processing Time 0.02 seconds

Vibration Reduction of Pipe Line in Air-conditioner for Railway Vehicle (철도차량용 냉방기 배관계의 진동저감 연구)

  • You, Won-Hee;Jung, Yong-Ho;Koo, Jeong-Seo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.925-931
    • /
    • 2012
  • The air-conditioner for railway vehicle should have vibration durability in order to operate normally in vehicle running situation. KS R 9144(vibration test methods for railway vehicle parts) is used to verify the vibration durability. The specifications of compressor, condenser and evaporator for air-conditioner in railway vehicle are standardized, but the shape and structure of pipe lines are not specified. Because the air-conditioner handler produces the pipe line arbitrarily, sometimes the pipe line is broken during the vibration durability test. In this research the cause identification and solution of pipe line breaking problem in during the vibration durability test were studied for air-conditioner of railway vehicle(diesel multiple unit). It was found that the natural frequency of pipe line is related to the pipe line breaking by experiment. A new pipe line shape was introduced by using FEA in order to avoid the resonance. The prototype new pipe line was applied to air-conditioner and the natural frequency was measured by experiment in order to verify the resonance avoidance. The vibration reduction of air-conditioner with new pipe line was reviewed by comparing to the air-conditioner with original one.

Fluid-Structure Interaction (FSI) Modal Analysis to Avoid Resonance of Cylinder Type Vertical Pump at Power Plant (원통형 수직 펌프의 공진회피를 위한 접수진동해석)

  • Lee, Jae-Hwan;Wang, Ji-Teng;Maring, Kothilngam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.4
    • /
    • pp.321-329
    • /
    • 2018
  • Resonance phenomena occurs at large vertical pump which is operating to cool down the hot steam using sea water in the power plant. To avoid the resonance, the natural frequency needs to be isolated about 20% from motor operating speed. Yet, excessive vibration occurs especially at low tide. At first, natural frequency of the whole pump system and each part is calculated using ANSYS. As it is revealed in the previous journal papers that only circular pipe part is related to resonance, the FSI technique is applied for free vibration analysis. The natural frequency is reduced to 60% (compared to that) of the frequency measured in air as it is similar to other published results. And the frequency obtained by finite element analysis is almost same to that obtained from modal test. Based on the accurate finite element model and analysis, design change is tried to avoid the resonance by changing the thickness of pipe and base supporting plate. In stead of doing optimization process, design sensitivity is computed and used to find such designs to avoid resonance.

Shape Optimization of an Air Conditioner Piping System (에어컨 배관 시스템의 형상 최적설계)

  • Min, Jun-Hong;Choi, Dong-Hoon;Jung, Du-Han
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1151-1157
    • /
    • 2009
  • Ensuring both product quality and reducing material cost are important issue for the design of the piping system of an air conditioner outdoor unit. This paper describes a shape optimization that achieves mass reduction of an air conditioner piping system while satisfying two design constraints on resonance avoidance and the maximum stress in the pipes. In order to obtain optimized design results with various analysis fields considered simultaneously, an automated multidisciplinary analysis system was constructed using PIAnO v.2.4, a commercial process integration and design optimization(PIDO) tool. As the first step of the automated analysis system, a finite element model is automatically generated corresponding to the specified shape of the pipes using a morphing technique included in HyperMesh. Then, the performance indices representing various design requirements (e.g. natural frequency, maximum stress and pipe mass) are obtained from the finite element analyses using appropriate computer-aided engineering(CAE) tools. A sequential approximate optimization(SAO) method was employed to effectively obtain the optimum design. As a result, the pipe mass was reduced by 18 % compared with that of an initial design while all the constraints were satisfied.

An experimental investigation on the errect of air entrainment (공기유입이 화재강도에 미치는 영향에 대한 실험적인 연구)

  • Kim, Jin-Guk
    • Fire Protection Technology
    • /
    • s.21
    • /
    • pp.5-12
    • /
    • 1996
  • An experimental investigation has been made with the objcetive of studying the effects of air entrainment of fire strength. A rich jet flame is considered as an fire, and fire, and the air entrainment is controlled by introducing the tone excitation which is generated by means of a loudspeaker-driven cavity. The excitation frequency is chosen for the resonant frequency identified as a pipe resonance due to acoustic excitation. As the excitation intensity increases, the amplitude of oscillating velocity for inducing air entrainment is increased, the flame height decreased and the structure of diffusion flame gradually transformed to that of premixed flame.

  • PDF

A Study of Structural Response of Pipes due to Internal Gaseous Detonation of Hydrogen- and Hydrogen-Air Mixtures (수소와 탄화수소 계열 연료의 비정상 연소에 의한 파이프 변형 연구)

  • Kim, Dae-Hyun;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1094-1103
    • /
    • 2008
  • A fuel specific detonation wave in a pipe propagates with a predictable wave velocity. This internal detonation wave speed determines the level of flexural wave excitation of pipes and the possibility of resonant response leading to a large displacement. In this paper, we present particular solutions of displacements and the resonance conditions for internally loaded pipe structures. These analytical results are compared to numerical simulations obtained using a hydrocode(multi-material blast wave analysis tool). We expect to identify potential explosion hazards in the general power industries.

A Study on Fluid Flow in the Intake Manifold for an Engine (엔진 흡기관내의 유체유동에 관한 연구)

  • 성낙원;이응석;강건용;엄종호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.295-307
    • /
    • 1988
  • In order to predict performance of the intake manifold, which is dependent on the length and diameter of a resonance pipe, the Fluid Dynamic Model for 4-cylinder diesel engine is developed using two step Lax-Wendroff method to solve the governing equations of air flow in the intake system. Boundary conditions at the intake valve, branch at the manifolds, and pipe end are also modeled. The results of the models are compared with the experimental results of a motored engine. The model is capable of predicting the real phenomena satisfactorily with reasonable computing time.

Development of the Syringe Experiment Device for the Education of Sound Resonance (소리 공명 교육을 위한 주사기 실험기구 개발)

  • Yoon, Ki-Sang;Han, Jae-Ho;Suh, Sang-Joon;Suh, Jae-Gap
    • Journal of Science Education
    • /
    • v.37 no.1
    • /
    • pp.233-243
    • /
    • 2013
  • The purpose of this study is to develop the syringe experiment device which is able to analyze the relationship between the length of the air pillar and resonance frequencies quantitatively for the education of sound resonance. We made an air pillar resonance device with a 'Head', which is used by the disposable syringe and the plastic sphere for constructing molecular models. We also assembled PC experiment equipment which is used by commercial software. As a result, it appears this equipment can be used instead of the current device used by experts. It was proved that this syringe device is not the 'pipe' but the 'Helmholtz resonator'. It appears that data through resonance experiments can prove the sound resonance phenomenon. In conclusion, this syringe resonator is the experiment device that can be used in the gifted education for middle-high school students and acoustic experiments for university students.

  • PDF

The study on tire Pattern Noise (타이어 패턴 소음에 대한 고찰)

  • Hwang, S.W.;Bang, M.J.;Rho, G.H.;Cho, C.T.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.340-343
    • /
    • 2006
  • As the needs of consumer on ride comforts increase and the reduction of road traffic noise tightened step by step, the power unit noise emitted by cars has been reduced. It has been found that tire noise dominates noise produced by the power-train when vehicles are driven at high speeds. Therefore, in these days, tire/pavement noise is concerned. Tire/pavement noise is affected by pavement type and vehicle???s transmission loss. Tire noise mechanism is produced by several mechanisms. The sound of tire can propagate either through the air or through the structure of vehicle. Pattern noise is the result of pressure variations through the air to the interior side of vehicle. Especially, on smooth asphalt the periodicity of tread design, pitch sequence is important factor, which have an influence on the reduction of tire noise.

  • PDF

Limit of equivalence ratio on mixing enhancement in rich flames. (과농 예혼합화염의 혼합촉진에 대한 당량비 한계)

  • Kim, Jin-Kook;Shin, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.51-55
    • /
    • 1996
  • An experimental investigation has been made with the objective of studying the limits of equivalence ratio on mixing enhancement in a tone excited jet flame. The jet is pulsed by means of a loudspeaker-driven cavity and rich flames(${\phi}>1.5$) are used. The excitation frequency is chosen for the resonant frequency identified as a pipe resonance due to acoustic excitation. Methane, propane and butane are used to examine the effect of mixture property on the limit of equivalence ratio. Mixing is always enhanced in a methane/air flame as the excitation intensity increases. Constant lower limits of equivalence ratio for mixing enhancement are present in cases of propane/air and butane/air flames irrespective of mean mixture velocities. The equivalence ratio limits are also found to be related to the flame instability ; the lower Le, the higher the limit of equivalence ratio. Under the equivalence ratio limits, cellular flames are generated as the excitation intensity increases. The amplitude of oscillating velocity for generating a cellular flame in the equivalence ratio limit is proportional to a mean mixture velocity irrespective of fuels.

  • PDF

A Study on Noise Reduction of Rotary Compressor (공조용 로터리 압축기의 소음 저감에 관한 연구)

  • Ahn, B.H.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.60-69
    • /
    • 1999
  • The noise and vibration sources of rotary compressor for room air-conditioner are pressure pulsation of compression process, cavity resonance of inner space, structural radiation noise of shell and impact noise of discharge valve. Among them, pressure pulsation is very important noise and vibration source. Because it transferred various kinds of noise and vibration like as mentioned above. In this reason, muffler and resonator are used in order to absorb and remove these noises. But an analytical prediction using acoustic analysis does not coincident with the experimental result. The difference between analysis and actual state is due to the assumption of analysis. This paper covered with new concept of muffler design based on the turbulence kinetic energy of flow by using CFD. From this analysis, it is possible to decide the best position of discharge port of muffler. Therefore $2{\sim}3dB$ noise reduction effect is acquired in rotary compressor of 5000 BTU grade. Also new approach of resonator design is suggested. From this study, the characteristics of resonator and surge hole (a kind of resonator without pipe length) are identified. The former is useful for pure tone noise (narrow frequency band), and the latter is effective for broad frequency band. This paper shows that it is very available to use 3 dimensional analysis of resonator in order to predict more exact tuning frequency. The result is proved by a lot of experiments. From combination of fluid analysis and acoustic analysis, up stream position is effective location of resonator concerning turbulence motion of fluid.

  • PDF