• Title/Summary/Keyword: Air liquefaction

Search Result 40, Processing Time 0.028 seconds

Design and Economic Analysis of Low Pressure Liquid Air Production Process using LNG cold energy (LNG 냉열을 활용한 저압 액화 공기 생산 공정 설계 및 경제성 평가)

  • Mun, Haneul;Jung, Geonho;Lee, Inkyu
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.345-358
    • /
    • 2021
  • This study focuses on the development of the liquid air production process that uses LNG (liquefied natural gas) cold energy which usually wasted during the regasification stage. The liquid air can be transported to the LNG exporter, and it can be utilized as the cold source to replace certain amount of refrigerant for the natural gas liquefaction. Therefore, the condition of the liquid air has to satisfy the available pressure of LNG storage tank. To satisfy pressure constraint of the membrane type LNG tank, proposed process is designed to produce liquid air at 1.3bar. In proposed process, the air is precooled by heat exchange with LNG and subcooled by nitrogen refrigeration cycle. When the amount of transported liquid air is as large as the capacity of the LNG carrier, it could be economical in terms of the transportation cost. In addition, larger liquid air can give more cold energy that can be used in natural gas liquefaction plant. To analyze the effect of the liquid air production amount, under the same LNG supply condition, the proposed process is simulated under 3 different air flow rate: 0.50 kg/s, 0.75 kg/s, 1.00 kg/s, correspond to Case1, Case2, and Case3, respectively. Each case was analyzed thermodynamically and economically. It shows a tendency that the more liquid air production, the more energy demanded per same mass of product as Case3 is 0.18kWh higher than Base case. In consequence the production cost per 1 kg liquid air in Case3 was $0.0172 higher. However, as liquid air production increases, the transportation cost per 1 kg liquid air has reduced by $0.0395. In terms of overall cost, Case 3 confirmed that liquid air can be produced and transported with $0.0223 less per kilogram than Base case.

Experimental Study on Optimal Generation of Methane Hydrate (가스하이드레이트 생성조건 최적화에 관한 실험적 연구)

  • Yoon, Seok-Ho;Lee, Jung-Ho;Lee, Kong-Hoon;Park, Sang-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1317-1321
    • /
    • 2009
  • Natural gas liquefaction plant and LNG carrier needs large capital investment. Therefore a lot of small or middle scale natural gas fields aren't developed due to poor profitability. If natural gas is made to gas hydrate instead of liquefaction, developing small-scale natural gas field can be profitable because building cost of gas hydrate plant and carrier are economical. Because the process of making gas hydrate consumes much energy, the gas hydrate formation process has to be optimized for energy consumption. In this study, gas hydrate formation process was investigated experimentally. Experimental apparatus consists of reactor, pressure regulator, chiller, and magnetic stirrer. 99.95% methane was used to make gas hydrate. Tests were conducted at variable pressure and temperature condition.

  • PDF

Effects of Compositions of Mixed Refrigerants on the Performance of a C3MR Natural Gas Liquefaction Process (혼합냉매 조성에 따른 C3MR 천연가스 액화공정 성능 비교)

  • Liu, Jay
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.314-320
    • /
    • 2014
  • The purpose of this work is to optimize composition of mixture refrigerants used in the C3MR (Propane & Mixed Refrigerants) process by a statistical optimization technique. C3MR studied in this work is one of widely used commercial natural gas liquefaction processes with high efficiency. Process simulation was performed in a commercial process simulator and methane ($C_1$), ethane ($C_2$), propane ($C_3$), and nitrogen ($N_2$) were selected as mixed refrigerants. Using the process model, optimum composition of refrigerants mixture was determined via mixture design and central composite design to produce minimum energy consumption. As a result, it was confirmed that energy consumption is reduced down to 11.3% comparing to existing design. It was also compared with heat effectiveness through temperature profile of MCHE (main cryogenic heat exchanger).

Economic Evaluation of Liquid Air Energy Storage (LAES) System (액화 공기 에너지 저장 기술(LAES)의 경제성 분석)

  • Ko, Areum;Park, Sung-Ho;Ryu, Ju-Yeol;Park, Jong-Po
    • New & Renewable Energy
    • /
    • v.16 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • Liquid air energy storage (LAES) using gas liquefaction has attracted considerable attention because of its mature technology, high energy density, few geographical constraints, and long life span. On the other hand, LAES has not yet been commercialized and is being developed recently. Therefore, few studies have performed an economic analysis of LAES. In this study, the levelized cost of electricity was calculated and compared with that of other energy storage systems. As a result, the levelized cost of electricity of LAES was $371/MWh. This is approximately $292/MWh, $159/MWh, $118/MWh, and $3/MWh less than that of the LiCd battery, VRFB battery, Lead-acid battery, and NaS battery. In addition, the cost was approximately $62/MWh and $195/MWh more than that of Fe-Cr flow battery and PHS. Sensitivity analysis of the levelized cost of electricity according to the main economic factors was performed, and economic uncertainty analysis was performed through a Monte-Carlo simulation. The cumulative probability curve showed the levelized cost of electricity of LAES, reflecting price fluctuations in the air compressor cost, electricity cost, and standing reserve hourly fee.

Kinetics Study for Wet Air Oxidation of Sewage Sludge (하수슬러지의 습식산화반응에 대한 동력학적 연구)

  • Ahn, Jae-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.746-752
    • /
    • 2005
  • In this study, the effect of reaction parameters including reaction temperature, time, and pressure on sludge degradation and conversion to intermediates such as organic acids were investigated at low critical wet air oxidation(LC-WAO) conditions. Degradation pathways and a modified kinetic model in LC-WAO were proposed and the kinetics model predictions were compared with experimental data under various conditions. Results in the batch experiments showed that reaction temperature directly affected the thermal hydrolysis reaction rather than oxidation reaction. The efficiencies of sludge degradation and organic acid formation increased with the increase of the reaction temperature and time. The removal of SS at $180^{\circ}C$, $200^{\circ}C$, $220^{\circ}C$ and $240^{\circ}C$ of reaction temperatures and 10 min of reaction time were 52.6%, 68.3%, 72.6%, and 74.4%, respectively, indicating that most organic suspended solids were liquified at early stage of reaction. At $180^{\circ}C$, $200^{\circ}C$, $220^{\circ}C$ and $240^{\circ}C$ of reaction temperatures and 40 min of reaction time, the amounts of organic acids formed from 1 g of sludge were 93.5 mg/g SS, 116.4 mg/g SS, 113.6 mg/g SS, and 123.8 mg/g SS, respectively, and the amounts of acetic acid from 1 g of sludge were 24.5 mg/g SS, 65.5 mg/g SS, 88.1 mg/g SS, and 121.5 mg/g SS, respectively. This suggested that the formation of sludge to organic acids as well as the conversion of organic acids to acetic acid increased with reaction temperature. Based on the experimental results, a modified kinetic model was suggested for the liquefaction reaction of sludge and the formation of organic acids. The kinetic model predicted an increase in kinetic parameters $k_1$ (liquefaction of organic compounds), $k_2$ (formation of organic acids to intermediate), $k_3$ (final degradation of intermediate), and $k_4$ (final degradation of organic acids) with reaction temperature. This indicated that the liquefaction of organic solid materials and the formation of organic acids increase according to reaction temperature. The calculated activation energy for reaction kinetic constants were 20.7 kJ/mol, 12.3 kJ/mol, 28.4 kJ/mol, and 54.4 kJ/mol, respectively, leading to a conclusion that not thermal hydrolysis but oxidation reaction is the rate-limiting step.

A Study of the Characteristics of the High-Flowable Concrete (고유동콘크리트의 특성에 관한 실험적 연구)

  • Jeon, Hyun-Kyu;Kim, Dae-Hoi;Lee, Jong-Chan;Ji, Suk-Won;Yoo, Taek-Dong;Seo, Chee-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.2
    • /
    • pp.129-134
    • /
    • 2003
  • In this research, we used fly-ash and blast-furnace slag as substitute material of cement and fine aggregate, and we, through experiments, researched and analyzed the features of high-flowable concrete added high efficiency AE water reduction agent. The results are below. 1. Liquefaction generally presented high-slump flow value; on the other hand, partial segregation was observed in case of mixing proportion with 65 cm slump flow and above. This segregation was partially improved in accordance with mixing admixture. 2. Compressive strength according to mixing admixture and increasing mixing ratio of fly-ash were subject to be declined when it was initially cast-in, but its gap was improved when time was fully passed. 3. After mixing blast-furnace slag and fly-ash as substitute material, the result showed that the modulus of elasticity against freezing & melting was improved according to mixing blast-furnace slag and also increased in accordance with increasing pulverulent-body volume. 4. According to increasing the mixing volume of fly-ash, the durability factor was deteriorated because compressive strength became lower as well as air content was decreased when it was initially case-in. 5. The minimum air content to secure durability was 3.7%, for that reason, we had better secure admixture such as air entraining agent when cast-in high-flowable concrete.

Characteristics and Economic Evaluation of a CO2-Capturing Repowering System with Oxy-Fuel Combustion for Utilizing Exhaust Gas of MCFC (MCFC 배기가스를 이용하는 순산소연소 $CO_2$ 회수형 발전시스템의 특성과 경제성 평가)

  • Pak, Pyong-Sik;Lee, Young-Duk;Ahn, Kook-Young;Jeong, Hyun-Il
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2940-2945
    • /
    • 2008
  • The scale of 2.4 MW MCFC was taken to construct a high-efficiency and economical power generation system without CO2 emission into the atmosphere for utilizing its exhaust gas. The conventional steam turbine power generation system (STGS) was evaluated and the net generated power (NGP) was estimated to be only 133 kW and the STGS is not economically feasible. A CO2-caputuring repowering system was proposed, where low temperature steam (LTS) produced at HRSG by using exhaust gas from MCFC is utilized as a main working fluid of a gas turbine, and the temperature of LTS was raised by combusting fuel in a combustor by using pure oxygen, not the air. It has been shown that NGP of the proposed system is 264 kW, and CO2 reduction amount is 608 t-CO2/y, compared to 306 t-CO2/y of STGS. The CO2 reduction cost was estimated to be negligible small, even when the costs of oxygen production and CO2 liquefaction facilities etc. were taken into account.

  • PDF

A Reliability of Equation of State for Nitrogen, Oxygen and Argon (질소, 산소, 아르곤에 대한 상태방정식의 신뢰도)

  • Yong Pyeong-Soon;Moon Hung-Man;Son Moo-Ryong;Yi Sung-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.41-48
    • /
    • 1997
  • The equation of state is widely utilized as a simple model for the prediction of gas properties. There are several equations of state and they often make diverse and hard to believe output of gas properties. In this study, We show a reliability of equation of state for nitrogen, oxygen and argon in pressure range from 1 bar to 30 bar and temperature range from liquefaction to room temperature. We use three equations of state such as Soave-Redlich-Kwong, Peng-Robinson and BWR-LS' equation of state which provided in the Aspen plus. The results were compared with literatures and virial equation. Finally, We report the differences of process calculation of distillation column and expansion turbine in cryogenic air separation plant with change of equation of state.

  • PDF

Effects of Hydrogen in SNG on Gas Turbine Combustion Characteristics (합성천연가스의 수소함량 변화에 따른 가스터빈 연소특성 평가)

  • Park, Se-Ik;Kim, Ui-Sik;Chung, Jae-Hwa;Hong, Jin-Pyo;Kim, Sung-Chul;Cha, Dong-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.412-419
    • /
    • 2012
  • Increasing demand for natural gas and higher natural gas prices in the recent decades have led many people to pursue unconventional methods of natural gas production. POSCO-Gwangyang synthetic natural gas (SNG) project was launched in 2010. As the market price of natural gas goes up, the increase of its price gets more sensitive due to the high cost of transportation and liquefaction. This project can make the SNG economically viable. In parallel with this project, KEPCO (Korea Electric Power Corporation) joined in launching the SNG Quality Standard Bureau along with KOGAS (Korea Gas Corporation), POSCO and so on. KEPCO Research Institute is in charge of SNG fueled gas turbine combustion test. In this research, several combustion tests were conducted to find out the effect of hydrogen contents in SNG on gas turbine combustion. The hydrogen in synthetic natural gas did not affect on gas turbine combustion characteristics which are turbine inlet temperature including pattern factor and emission performance. However, flame stable region in ${\Phi}$-Air flow rate map was shifted to the lean condition due to autocatalytic effect of hydrogen.

The Flow Behavior Characteristics of Methane with Phase Change at Low Heat Flux (저열유속에서 상변화를 수반하는 메탄의 유동거동특성)

  • Choi, Bu-Hong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.1
    • /
    • pp.96-103
    • /
    • 2014
  • A liquefied natural gas(LNG) in cryogenic liquid is converted back into gaseous form for distribution to residential and industrial consumers. In this re-gasification process, LNG supplies a plenty of cold thermal energy about $83.7{\times}10^4kJ/kg$. The LNG cold thermal energy is utilized for the re-liquefaction process of cryogenic fluids such as Nitrogen, Hydrogen and Helium, and ice manufacturing process and air-conditioning system in some advanced countries. Therefore, it is also necessary to establish the recovery systems of the LNG cold thermal energy around Incheon, Pyungtaek and Tongyung LNG import terminals in our country. Methane is used as working fluid in this paper, which is the major component of LNG over 85 % by volume, in order to investigate the flow behavior characteristics of LNG with phase change at low heat flux. This paper presents the effects of pipe diameters, pipe inclinations and saturation pressures on the flow boundaries of methane flowing in a cryogenic heat exchanger tube, together with those of nitrogen, propane, R11 and R134a. The outcomes obtained from this theoretical researches are also compared with previous experimental data. It was also found that the effect of pipe inclination on the methane flow boundaries was significant.