DOI QR코드

DOI QR Code

Effects of Compositions of Mixed Refrigerants on the Performance of a C3MR Natural Gas Liquefaction Process

혼합냉매 조성에 따른 C3MR 천연가스 액화공정 성능 비교

  • Liu, Jay (Department of Chemical Engineering, Pukyong National University)
  • 유준 (부경대학교 화학공학과)
  • Received : 2014.07.04
  • Accepted : 2014.08.12
  • Published : 2014.09.30

Abstract

The purpose of this work is to optimize composition of mixture refrigerants used in the C3MR (Propane & Mixed Refrigerants) process by a statistical optimization technique. C3MR studied in this work is one of widely used commercial natural gas liquefaction processes with high efficiency. Process simulation was performed in a commercial process simulator and methane ($C_1$), ethane ($C_2$), propane ($C_3$), and nitrogen ($N_2$) were selected as mixed refrigerants. Using the process model, optimum composition of refrigerants mixture was determined via mixture design and central composite design to produce minimum energy consumption. As a result, it was confirmed that energy consumption is reduced down to 11.3% comparing to existing design. It was also compared with heat effectiveness through temperature profile of MCHE (main cryogenic heat exchanger).

이번 연구의 목적은 세계적으로 널리 이용되고 있고, 액화 효율이 높은 Air Products and Chemicals Inc. (APCI)사(社)의 C3MR(Propane Pre-cooled & Mixed Refrigerants) 천연가스 액화공정에 사용되는 혼합냉매의 최적 조성을 통계학적 기법으로 결정하는 것이다. 공정모사는 상업 공정 모사기를 이용했으며 혼합냉매는 methane ($C_1$), ethane ($C_2$), propane ($C_3$)과 nitrogen ($N_2$)로 선택하였다. 그리고 혼합물 설계(mixture design, MD)와 중심합성계획법(central composite design, CCD)을 이용하여 전체 공정의 에너지 소비가 최소가 되게 하는 최적의 혼합냉매 조성을 결정하였다. 연구결과 기존 설계 대비 최대 11.28%의 에너지 소비 절감을 확인하였다. 또한 주 극저온 열교환기(main cryogenic heat exchanger, MCHE)의 온도 프로파일을 통해 열적 효율성도 함께 비교하였다.

Keywords

References

  1. Chang, H. S., Lee, B. N., and Gu, B. S., "A Raise Plan of Competitiveness of Internal Company in the Overseas Plant Market," Construction Economy Res. Inst. Korea, 19, 2-30 (2007).
  2. Cha, J. H. Lee, J. C. Roh, M. I., and Lee, K. Y., "Determination of the Optimal Operating Condition of the Hamworthy Mark I Cycle for LNG-FPSO," JSNAK, 47(5), 733-742 (2010). https://doi.org/10.3744/SNAK.2010.47.5.733
  3. Shukri, T., "LNG Technology Selection," Hydro. Eng., 9(2), 71-74 (2004). https://doi.org/10.1061/(ASCE)1084-0699(2004)9:2(71)
  4. Cao, W.-S., Lu, X.-S., Lin, W.-S., and Gu, A.-Z., "Parameter Comparison of Two Small-scale Natural Gas Liquefaction Process in Skid-mounted Packages," Appl. Therm. Eng., 26, 898-904 (2006). https://doi.org/10.1016/j.applthermaleng.2005.09.014
  5. Barclay, M. A., and Yang, C. C. "Offshore LNG: The Perfect Starting Point for the 2-phase Expander," Offshore Technology Conference 2006, Houston, TX 1-4 May 2006.
  6. Finn, A. J., Johnson, G. L., and Tomlinson, T. R., "LNG Technology for Offshore and Mid-Scale Plants. Proceedings of the Seventy-Ninth Annual Convention of the Gas Processors Association, pp. 429-450, Atlanta, Georgia, Mar. 13-15, 2000.
  7. Kennett, A. J., Limb, D. I., and Czarnecki, B. A., "Offshore Liquefaction of Associated Gas - A Suitable Process for the North Sea," Proceedings of 13th Offshore Technology Conference 1981, pp. 31-40.
  8. Little, W. A., Method for Efficient Counter-current Heat Exchange Using Optimized Mixtures. U.S. Patent 5,644,502, 1997.
  9. Alexeev, A., and Quack, H., Refrigerant mixture for a mixture throttling process. U.S. Patent 6,513,338, 2003.
  10. Gong, M. Q., Luo, E. C., Zhou, Y., Liang, J. T., and Zhang, L., "Optimum Composition Calculation for Multicomponent Cryogenic Mixture Used in Joule-Thomson Refrigerators," Adv. Cryog. Eng., 45, 283-290 (2000).
  11. Boiarskii, M., Khatri, A., and Kovalenko, V., "Design Optimization of the Throttle Cycle Cooler with Mixed Refrigerant," Cryocoolers, 10, 457-465 (2002).
  12. Chang, H.-M., Chung, M. J., Lee, S., and Choe, K. H., "An Efficient Multi-stage Brayton-JT Cycle for Liquefaction of Natural Gas," Cryogenics, 51, 278-286 (2011). https://doi.org/10.1016/j.cryogenics.2010.10.006
  13. Lee, S., Long, N. V., and Lee, M., "Design and Optimization of Natural Gas Liquefaction and Recovery Processes for Offshore Floating Liquefied Natural Gas Plants," Ind. Eng. Chem. Res., 51, 10021-10030 (2012). https://doi.org/10.1021/ie2029283
  14. Robert, C. R., The Properties of Gases and Liquids, 4th ed., McGraw-Hill, 1987.
  15. Helgestad, D.-E., Modelling and Optimization of the C3MR Process for Liquefaction of Natural Gas, http://www.nt.ntnu.no/users/skoge/diplom/prosjekt09/helgestad/Helgestad_project.pdf.
  16. Venkatarathnam, G., Cryogenic Mixed Refrigerant Processes, Springer, 2008.
  17. Hwang, J-H., Roh, M-I., and Lee, K-Y., "Determination of the Optimal Operating Condition of the Dual Mixed Refrigerant Cycle at the Pre-FEED Stage of the LNG FPSO Topside Liquefaction Process," Comput. Chem. Eng., 49(11), 25-36 (2013). https://doi.org/10.1016/j.compchemeng.2012.09.008
  18. Kim, M.-J. Lee, G., and Liu, J., "Determination of Mixing Ratio of Mixed Refrigerants and Performance Analysis of Natural Gas Liquefaction Processes," Korean Chem. Eng. Res., 51(6), 1-8 (2013). https://doi.org/10.9713/kcer.2013.51.1.1
  19. Kim, H. J. Lee, J. Y., Kim, W. B., and Park, C. K., "Basic Design of Mixed Refrigerant Cycle in Bench Scale Unit LNG Plant's Liquefaction Process," SAREK, pp. 729-734 (2009).
  20. Kim, S.-M., Kim, D.-K., Lee, J.-S., Park, S.-C., and Rhee, Y.-W., "Esterification Reaction of Animal Fat for Bio-diesel Production," Clean Technol., 18(1), 102-110 (2012). https://doi.org/10.7464/ksct.2012.18.1.102