• Title/Summary/Keyword: Air leakage

Search Result 539, Processing Time 0.028 seconds

A Study on the Reliability Evaluation System for O-ring of Semiconductor Equipments (반도체장비용 오링의 종합 신뢰성 평가기술에 관한 연구)

  • 김동수;김광영;최병오;박화영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.613-617
    • /
    • 2001
  • The test items like as endurance, air leakage and oil endurance test is requested for reliability evaluation about O-ring which is a kind of core machinery accessories of semi-conduct manufacturing equipment. For verification of these, we design and manufactured a test system for endurance, air leakage and oil endurance of O-ring for semi-conduct manufacturing equipment, and also performed the test for two kinds of O-ring, as it were Viton and Kalretz. The characteristics of this test equipment consist in realization of the test conditions of semi-conduct manufacturing equipment and satisfying the test method. The test conditions are cut gas, vacuum grade, temperature and revolution numbers in the endurance test system, vacuum grade and temperature in the air leakage test system, temperature and time in the oil endurance test system. The separating test results for wearing which is an oil endurance test item, the wearing index of domestic produced Viton O-ring is higher than foreign product by 2%, wearing rate of Kalretz O-ring better than Viton O-ring by 17%, and particles existed in various place. The test result of air leakage which is measured through the RGA sensor used Helium, the vacuum grade was $10^-3$Torr. And the test result of oil endurance, the volume change rate was 7~15%. Hereafter, we intend to analysis the reliability test evaluation and to utilize for domestic manufacturing companies by establishing data base and developing reliability softwares.

  • PDF

Analyses of Leakage Magnetic Field and Leakage Inductance in Current Transformers by 3-D Integral Methods (3차원 적분법을 이용한 변류기의 누설 자계 및 누설 인덕턴스 해석)

  • 이희갑;박용필;이준웅;박우현;이기식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.503-506
    • /
    • 2001
  • This paper presents leakage magnetic field and leakage inductance calculations in current transformer by means of 3-D Integral methods. From the distribution diagram of leakage magnetic flux to be analyzed using program called TRACAL3, it confirms a parallel to the winding axis direction of the leakage flux lines in the air gap between the windings. The leakage inductances L$\sub$r1/ and L$\sub$R2/ of the primary and secondary windings were calculated, their values are 4.23 mH and 0.49 mH, respectively. They are also similar to the measured values of the leakage inductances for the experimental verification, 4.06 mH and 0.47 mH.

  • PDF

An Analytic and Experimental Study on the Performance Characteristic of the Rotary Compressor (로타리 압축기 성능특성에 관한 해석 및 실험)

  • 최득관;김경천;차강욱
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.6
    • /
    • pp.497-504
    • /
    • 2001
  • A study to improve the accuracy of a map-based compressor model with experiment was performed. Corrections on the effects of suction gas superheat and heat leakage from a compressor shell are required to apply the compressor amp model based on the empirical performance data(map) of compressor manufacturers to the actual system. So experiments to assess the effects of superheat and hat leakage were performed and the corrected equations were made. Compressors and refrigerant used in the experiment were the high pressure type rotary compressor and R-22, experiments were performed by compressor calorimeter. From the experiment, a volumetric efficiency correction factor$(F_ν)$ showed the value of 0.77, slightly higher than 0.75 proposed by Dabiri and Rice for low pressure type reciprocating compressor, and the heat leakage from the compressor shell turned out to be a factor that influenced the discharged mass flow rate. The relation between heat leakage of compressor shell and the variation of discharged mass flow rate from compressor was considered in compressor map modeling as an empirical function. With this function, the prediction accuracy of compressor model in system conditions was improved.

  • PDF

A New Poly-Si TFT Employing Air-Cavities at the Edge of Gate Oxide (게이트 산화막 가장자리에 Air-cavity를 가지는 새로운 구조의 다결정 실리콘 박막 트랜지스터)

  • Lee, Min-Cheol;Jung, Sang-Hoon;Song, In-Hyuk;Han, Min-Koo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.8
    • /
    • pp.365-370
    • /
    • 2001
  • We have proposed and fabricated a new poly-Si TFT employing air-cavities at the edges of gate oxide in order to reduce the vertical electric field induced near the drain due to low dielectric constant of air. Air-cavity has been successfully fabricated by employing the wet etching of gate oxide and APCVD (Atmospheric pressure chemical vapor deposition) oxide deposition. Our experimental results show that the leakage current of the proposed TFT is considerably reduced by the factor of 10 and threshold voltage shift under high gate bias is also reduced because the carrier injection into gate insulator over the drain depletion region is suppressed.

  • PDF

A Study on the Ventilation Schemes for Gas Leakage and Dispersion Controlling at the Backfilled Working Face in Large-Opening Underground Mine (대단면 지하광산 갱도내 뒷채움 작업장 가스유출 및 확산제어 통기방안 연구)

  • Nguyen, Vanduc;Lee, Changwoo
    • Tunnel and Underground Space
    • /
    • v.28 no.4
    • /
    • pp.372-386
    • /
    • 2018
  • The air quality near the backfilled site area is significantly deteriorated during and even after the curing period of the backfill materials. Hazardous gases such as NH3 and CO2 may leak out prolongedly from the mined-out sites backfilled with the composite carbonate-based material; leakage can be observed at the underground working sites as well as on the surface. At operating mines, underground gas leakage will severely aggravate the workplace environment. The ventilation schemes should supply sufficient air to dilute the contaminated air, and control the toxic gas leakage and dispersion. This study shows the applicability of pressurization ventilation system to control gas leakage and dispersion at the backfilled underground mine site.

A Numerical Analysis of Hydrogen Diffusion for Hydrogen Leakage from a Fuel Cell Vehicle in a Long Road Tunnel (장대터널에서 수소연료전지 차량의 수소 누출에 대한 수소 거동의 수치해석 연구)

  • Choi, Jongrak;Hur, Nahmkeon;Lee, Moonkyu;Chang, Hyungjin;Lee, Kwangbum;Yong, Geejoong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.588-597
    • /
    • 2012
  • In the present study, the dispersion characteristics of hydrogen leakage from a Fuel Cell Vehicle (FCV) were analyzed by numerical simulation in order to assess the risk of a hydrogen leakage incident in a long road tunnel. In order to implement the worst case of hydrogen leakage, the FCV was located at the center of a tunnel, and hydrogen was completely discharged within 63 seconds. The Leakage velocity of hydrogen was adopted sub-sonic speed because that the assumption of the blockage effect of secondary device inside a vehicle. The temporal and spatial evaluation of the hydrogen concentration as well as the flammable region in a road tunnel was reported according to change of ventilation operating conditions. The hydrogen was blended by supply air form a ventilation fan, however, the hydrogen was discharged to outside in the exhaust air. It is observed that the efficiency way to eliminate of hydrogen is supply air operating condition under the hazardous hydrogen leaking incident. The present numerical analysis can be provided useful information of ventilation under the hydrogen leaking situation.

measuring leakage in air lines

  • 임광규
    • Cement
    • /
    • s.47
    • /
    • pp.69-73
    • /
    • 1972
  • 본 시험은 현장에서 실시 가능한 간이식 측정 방법에 의하여 실시되었으며 pipe line의 점검, 보수 등의 불철저로 인한 air leakage량은 전체 압기 토출량의 12.42$\%$에 달하고 있다.

  • PDF

Measurement of R-134a Leakage from Vehicle Equipped Mobile Air Conditioning(MAC) System (실차를 이용한 자동차 에어컨 냉매 누출량 평가)

  • Kim, Ji Young;Seo, Chungyoul;Lee, Sangeun;Kim, Jeongsoo
    • Journal of Climate Change Research
    • /
    • v.3 no.2
    • /
    • pp.153-159
    • /
    • 2012
  • CFC-12 used in mobile air conditioning(MAC) system has been replaced by R-134a, a type of HFC refrigerant, from 1991 to 1994. R-134a has since been widely used as a refrigerant of a mobile air conditioner. However, it is one of the six main green house gases listed in Kyoto Protocol, which makes it imperative to regulate its emission and develop alternative refrigerants. In this study, the concentration of leaked R-134a was measured using VT(Variable Temperature) shed and Running loss test shed to analyze the level of air conditioner refrigerant leaked in a vehicle. According to the analysis of the concentration of R-134a leaked from a vehicle parked, annual leakage amount of R-134a was in the range of 6.46~13.28 g/yr. The figure was similar with the leakage from the mobile air conditioning system currently used. In a study using the same vehicle model, a vehicle equipped with dual evaporation system had a higher leakage rate of refrigerant than a vehicle with a single evaporation system. It appears that the added fittings and joints of the dual evaporator system led to higher leakage rate. Besides, the analysis of the change in R-134a concentration under various car speed found that more refrigerant leaked under high speed(100km/hr) and but the volume of the wind did not affect to the variation of refrigerant leakage.

Risk analysis of flammable range according to hydrogen vehicle leakage scenario in road tunnel (도로터널 내 수소차 누출시나리오에 따른 가연영역에 대한 위험성분석 연구)

  • Lee, Hu-Yeong;Ryu, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.305-316
    • /
    • 2022
  • Hydrogen energy is emerging as an alternative to the depletion of fossil fuels and environmental problems, and the use of hydrogen vehicles is increasing in the automobile industry as well. However, since hydrogen has a wide flammability limit of 4 to 75%, there is a high concern about safety in case of a hydrogen car accident. In particular, in semi-enclosed spaces such as tunnels and underground parking lots, a fire or explosion accompanied by hydrogen leakage is highly likely to cause a major accident. Therefore, it is necessary to review hydrogen safety through analysis of flammability areas caused by hydrogen leakage. Therefore, in this study, the effect of the air velocity in the tunnel on the flammability area was investigated by analyzing the hydrogen concentration according to the hydrogen leakage conditions of hydrogen vehicles and the air velocity in the tunnel in a road tunnel with standard section. Hydrogen leakage conditions were set as one tank leaking and three tanks leaking through the TPRD at the same time and a condition in which a large crack occurred and leaked. And the air velocity in the tunnel were considered 0, 1, 2.5, and 4.0 m/s. As a result of the analysis of the flammability area, it is shown that when the air velocity of 1 m/s or more exists, it is reduced by up to 25% compared to the case of air velocity of 0 m/s. But there is little effect of reducing the flammability area according to the increase of the wind speed. In particular, when a large crack occurs and completely leaks in about 2.5 seconds, the flammability area slightly increases as the air velocity increases. It was found that in the case of downward ejection, hydrogen gas remains under the vehicle for a considerably long time.

Analysis of the Damaged Range Caused by LPG Leakage and Vapor Clouds Considering the Cold Air Flow (찬공기 흐름을 고려한 LPG 누출 및 증기운에 의한 피해 영향 범위 분석)

  • Gu, Yun-Jeong;Song, Bonggeun;Lee, Wonhee;Song, Byunghun;Shin, Junho
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.27-35
    • /
    • 2022
  • When LPG leaks from the storage tank, the gas try to sink to the ground because LPG is heavier than air. The gas easily creates vapor clouds causing aggressive accidents in no airflow. Therefore, It is important to prevent in advance by analyzing the damaged range caused from LPG leakage and vapor clouds. So, this study analyzed the range of damaged by LPG leakage and vapor clouds with consideration of the cold air flow which is generated by the topographical characteristics and the land use status at night time in the Jeju Hagari. As a result of the cold air flow using KLAM_21, about 2 m/s of cold air was introduced in from the southeast due to the influence of the terrain. The range of damaged by LPG leakage and vapor cloud was analyzed using ALOHA. When the leak hole size is 10 cm at the wind speed of 2 m/s, the range corresponding to LEL 60 % (12,600 ppm) was 61 m which range is expected to influence in nearby residential areas. These results of this study can be used as basic data to prepare preventive measures of accidents caused by vapor cloud. Forward, it is necessary to apply CFD modeling such as FLACS to check the vapor cloud formation due to LPG leakage in a relatively narrow area and to check the cause analysis.