• Title/Summary/Keyword: Air induction

Search Result 372, Processing Time 0.023 seconds

Electromagnetic Indirect Induction Fluid Heating System using High-Frequency Inverter and Its Performance Evaluations (전압형 고주파 인버터를 이용한 간접유도가열 열유체 에너지시스템과 그 성능평가)

  • Kim, YJ;Shin, DC;Kim, KH;Uchihori, Y;Kawamura, Y
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.483-486
    • /
    • 2001
  • This Paper the state-of-the art indirect induction heated boiler and induction heated hot air producer using the voltage-fed series resonant high-frequency inverter whice can operate in the frequency range from 20kHz to 50kHz. A specially-designed induction heater composed of laminated stainless assembly with many tiny holes and interconnected spot welding points between stainless plates is inserted into the ceramic type vessel with external working coil connected to the inverter and tubelence fluid through this induction heater in moving fluid generates in the vessel. The operating performances of this unique appliance in next generation and its effectiveness are evaluated and discussed from a practical point of view.

  • PDF

Characteristics of Ion Wind Generation According to Application of Acceleration Electrodes (가속전극의 적용에 따른 이온풍 발생 특성)

  • Kim, Chol-Gyu;Jang, Kyeong-Min;Kim, Jin-Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.5
    • /
    • pp.656-661
    • /
    • 2019
  • Currently, the devices to generate ion winds in air are mainly composed of corona electrodes and induction(ground) electrodes, of which the corona electrodes mainly use needles or wires as electrodes and the induction electrodes use plate electrodes of ring or mesh type. Ion winds can be effectively generated through a diverse combination of corona electrodes and induction electrodes mentioned above. However, only changing the form and structure of corona electrodes and induction electrodes has a limit in raising the speed of ion winds. This paper conducted a study on the characteristics of ion wind generation by additionally installing acceleration electrodes in addition to corona electrodes and induction electrodes to increase the speed of ion winds.

PROLONG THE SERVICE LIFE OF SWITCH RAIL BY IMPROVED INDUCTION HEAT TREATMENT

  • Zhan, Xinwei;Wang, Shuqing
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1946-1950
    • /
    • 2007
  • Switch rail is a very important part on the railway track, which not only accounts for the safety of the passing trains but also greatly influences the speed of the train. The higher the speed and the loads of the train the more it demands on the properties of the switch rail. Research shows that the higher mechanical properties of switch rail the longer the service life. Induction heat treatment is a good way of improving the mechanical properties of metallic materials. But the switch rail's section area changes gradually across the lengthways, which is difficult for induction heating especially for the small section. And the mechanical property of small section of the switch rail is the most important for its service life. The induction heat treatment used past always brings the low hardness on small section which can cause low service life of switch for wearing, or too high hardness because of martensite microstructure which can cause the shelling or even breaking of the switch rail. To prolong the service life of switch rail by higher mechanical properties, we researched the improved induction heat treatment for switch rail by adjusting speed of heating, and adopting compressed air cooling. The results showed that switch rail obtain almost the same high hardness across the length way after the improved induction heat treatment, which is very helpful to extend the service life of switch rail.

  • PDF

A Compensation Method of Parameter Variations for the Speed-Sensorless Vector Control System of Induction Motors using Zero Sequence Third Harmonic Voltages (영상분 3고조파 전압을 이용한 속도센서없는 유도전동기 벡터제어 시스템의 파라미터 변동 보상)

  • Choe, Jeong-Su;Kim, Jin-Su;Kim, Yeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.2
    • /
    • pp.75-82
    • /
    • 1999
  • A compensation method of the motor parameters using zero sequence third harmonic voltage is presented for the speed sensorless vector control of the induction motor considering saturation of the flux. Generally, the air-gap flux of the saturated induction motor contains the space harmonic components rotating with the synchronous frequency of the motor. Because the EMF of the saturated induction motor contains the zero sequence harmonic voltages at the neutral point of the motor, those harmonic voltages can be used as a saturation index. In this work, the rotor flux observer is firstly designed for the speed sensorless vector control of induction motor. And a novel measurement method of the space harmonic voltage and a compensation method of th LPF(Low Pass Filter) are proposed. For compensating the non-linear variations of the magnetizing inductance depending on the saturation level of the motor, the dominant third harmonic voltage of the motor is used as a saturation function of the air-gap flux. And the variation of the stator resistance owing to the motor temperature can also be measured with the phase angle between the impressed voltage vector and the zero sequence voltage. The validity of the proposed parameter compensation scheme in the speed sensorless vector control using rotor flux observer is verified by the result of the simulations and the experiments.

  • PDF

The speed control of the Single-Phase induction motor using P-I controller (비례 - 적분 제어기를 이용한 단상 유도 전동기의 속도 제어)

  • Sang, Doo-Whan;Cheong, Dal-Ho;Kim, Jung-Chul;Oh, Min-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.603-605
    • /
    • 1994
  • The Single-Phase induction motor is widely used in home appliances, especially refrigerator, air conditioner and washing machine. Recently many home appliances that use the motor require the speed control to get the various and convenient functions for the customers. Generally it is so hard to control the speed of the Single-Phase induction motor and to get the wide range of the speed variation. In this raper, the speed controller using P-I is designed for the Single-Phase induct ion Motor. The experimental results of the phase controller using P-I show the wide speed control of the Single-Phase induction motor and rebuff control to load change.

  • PDF

A Study on Detection of Broken Rotor Bars in Induction Motors Using Current Signature Analysis (전류신호를 이용한 유도전동기의 회전자봉 결함검출에 관한 연구)

  • 신대철;정병훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.4
    • /
    • pp.287-293
    • /
    • 2002
  • The unexpected failure of the induction motor makes the downtime of production, and the cost of the process cessation enormous. To reduce the downtime and increase the reliability of the motor, the vibration measurements for the fault detection have been used previously. Recently motor current signature analysis(MCSA) has been adapted for the fault detection and diagnosis of the motors. MCSA provides a powerful analysis tool for detecting the presence of mechanical and electrical faults in both the motor and driven equipment. In this paper, the fault severity of the rotor bar has been derived in terms of the resistance change which is calculated from the equivalent circuit model. Results show that the fault of the rotor can be easily detected and the measured value of the resistance change is verified by the detected fault from on-site tests using MCSA for the induction motors in an iron foundry.

Thermal Analysis of a Canned Induction Motor for Main Coolant Pump in System-Integrated Modular Advanced Reactor

  • Huh, Hyung;Kim, Jong-In;Kim, Kern-Jung
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.32-36
    • /
    • 2003
  • The three-phase canned induction motor, which consists of a stator and rotor with a seal can, is used for the main coolant pump (MCP) of the System-integrated Modular Advanced Reactor (SMART). The thermal characteristics of the can must be estimated exactly, since the eddy current loss of the can is a dominant parameter in design. Besides the insulation of the motor winding is compared of Teflon, glass fiber, and air, so it is not an easy task to analyze. A FEM thermal analysis was per-formed by using the thermal properties of complex insulation which were obtained by comparing the results of finite element thermal analysis and those of the experiment. As a result, it is shown that the characteristics of prototype canned induction motor have a good agreement with the results of FEM.

Characteristics Analysis on the Effects of Rotor Eccentricity in Squirrel-cage Induction Motor (회전자 편심을 고려한 농형 유도전동기의 특성해석)

  • Kim, Mi-Jung;Kim, Byong-Kuk;Hwang, Don-Ha;Kang, Dong-Sik;Cho, Yun-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.289-294
    • /
    • 2007
  • This paper describes the effects of rotor eccentricity in squirrel cage induction machines. Asymmetric electro-magnetic force caused by the frictional worn bearing, rotor misalignment and unbalanced rotor etc. generates an asymmetrical operation, vibration and electro-magnetic noise. The need for detection of these rotor eccentricities has pushed the development of monitoring methods with increasing sensitivity and noise immunity. In this paper, we focus on investigating the asymmetrical operation considering of unbalanced magnetic pull in squirrel-cage induction motor with 380 [V], 7.5 [kW], 4P, 1,768 [rpm]. The effects of the non-symmetric rotor and magnetic force are simulated by finite element method (FEM) and tested using search coils for measuring the actual air-gap flux.

An analysis of transient state for induction motor by using the magnetic equivalent circuit method (자기등가회로법에 의한 유도전동기 과도상태해석)

  • Jeong, Jong-Ho;Lee, Eun-Woong;Cho, Hyun-Kil;Kim, Jun-Ho;Lee, Hwa-Su
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.18-20
    • /
    • 2002
  • In this paper, the construction elements of the induction motor was represented by the magnetic tube. The magnetic tube is basis of the magnetic equivalent circuit. The magnetic equivalent circuit method is convenient of complicated analysis of the transient state of the induction motor. Because the method is restriction on only one direction of magnetic flux. Air gap magnetomotive force was calculated by magnetic equivalent circuit method. Starting transient torque and phase current of the induction motor was confirmed by the theoretical calculation and the experiments.

  • PDF

Characteristics Analysis of Electromagnetic Pump using Linear Induction Motor (선형유도전동기를 이용한 전자기 펌프의 특성해석)

  • 김창업
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.2
    • /
    • pp.36-42
    • /
    • 2000
  • This paper presents the characteristics analysis of electromagnetic pump using linear induction motors. The electromagnetic pump is designed to transfer the molten metals by the electromagnetic force of linear induction motors. The characteristics f a linear induction motor are analysed by the equivalent circuit method considering the end effects. For the verification of the analysis method, the locked test and load test with molten tin were made. The test results of locked test were compared with the simulations, and the velocity of the load test with molten zinc showed 0.24[m/x] with air gap 30[gap] which is sufficient for transferring molten tin.

  • PDF