• Title/Summary/Keyword: Air gasification

Search Result 89, Processing Time 0.023 seconds

Gasification of Coal and Torrefied Biomass Mixture (석탄과 반탄화 바이오매스 혼합연료의 가스화)

  • OH, GUNUNG;JANG, JIN YOUNG;RA, HO WON;SEO, MYUNG WON;MUN, TAE YOUNG;LEE, JAE-GOO;YOON, SANG JUN
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.2
    • /
    • pp.190-199
    • /
    • 2017
  • Air-blown Gasification of coal and torrefied biomass mixture is conducted on fixed-bed gasifier. The various ratio (9:1, 8:2, 7:3) of coal and torrefied biomass mixture are used. The contents of $H_2$, CO in the syngas were increased with gasification temperature. Carbon conversion tend to increase with temperature and equivalence ratio (ER). However, cold gas efficiency showed maximum point in ER range of 0.26-0.36. The torrefied biomass showed highest cold gas efficiency of 67.5% at $934^{\circ}C$, ER 0.36. Gasification of 8:2 mixture showed the highest carbon conversion and cold gas efficiency and synergy effect.

Characterization of Toxic Pollutants in Ash and Flue Gas from Gasification Incinerator of Waste Tires (폐타이어 건류 소각에서 발생되는 재와 배기 가스에서의 독성 오염 물질의 정량)

  • Koo, Ja Kong;Seo, Young Hwa;Kim, Seok Wan;Yoo, Dong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.213-220
    • /
    • 1993
  • The problem of disposing of huge quantities of used tires is of growing concern to every country. As an economical solid waste management, a gasification followed by incineration process was applied to scrap tires to recover heat and to reduce waste volume for final landfill disposal. The gasification temperature, combustible and non-combustible gasified products and possibly produced air pollutants were predicted by changing equivalent mole ratios of carbon to oxygen by a chemical equilibrium model. For a risk assessment of ash toxic pollutants including heavy metals and toxic organics were thoroughly analyzed. Gasification bottom ash contained much more toxic organic compounds than fly ash, whereas fly ash contained higher concentration of heavy metals such as Pb and Cd. Pretreatment or secure landfill technology is suggested for a safe management of ash produced from the gasification incinerators.

  • PDF

Experimental Evaluation of Synthesis Gas Production from Air Dried Woodchip (풍건 목편을 이용한 합성가스 생산에 대한 실험적 고찰)

  • Hong, Seong-Gu;Wang, Long
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.17-22
    • /
    • 2011
  • Biomass gasification provides synthesis gas or syngas that can be used for internal combustion engines as fuel or chemical synthesis as feedstock. Among different types of gasifiers, downdraft gasifier can produce relatively clean syngas with lower tar contents. In this study, a downdraft gasifier was fabricated with 150 mm of hearth diameter to gasify woodchip that is commercially available in this country. After drying woodchip to about 20 %, gasification experiments were conducted measuring temperature, pressure, air and gas flow rates. The volumetric concentrations of CO, $H_2$, $CO_2$, $CH_4$ were 10.7~14.5, 16.5~21.4, 12.5~16.6, and 2.3~2.9, respectively. They were overall within the ranges of the results that the previous studies showed. However, CO concentration was relatively lower and H2 was slightly higher than those from other studies. It seemed that water gas shift reaction was occurred due to the moisture in the fuel woodchip. Additional drying process coupled with syngas cooling would be required to improve the overall efficiency and syngas quality.

The Effect of the Integration Methods of Gas Turbine and Air Separation Unit on IGCC Plant Performance (가스터빈과 산소분리공정의 연계 방법에 따른 IGCC 플랜트 성능영향 분석)

  • 서석빈;김종진;조상기;이윤경;안달홍
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.533-539
    • /
    • 1999
  • Integration methods of a Gas Turbine and a Air Separation Unit have a potential to improve plant performance and cost of IFCC. Several studies on those integrations schemes were carried out. Then some of the methods were accually in commercial plants. Thus paper reviewed the integration schemes of a Gas Turbine and a Air Separation Unit. In order to compare the plant performance of IGCC with each scheme, simulation model was developed for IGCC power cycle with Texaco Quench gasification process. The simulation results showed that the thermal efficiency of the plant was appeared to be the best when all of the air consumption required for Air Separation Unit was supplied from the Gas Turbine and the net plant power output was maximized when 75% of the total ASU an requirement was supplied from Gas Turbine.

  • PDF

A Study on the Fundamental and Heat of Hydration Properties of Fly Ash Replacement Concrete Mixed with Coal Gasification Slag for Fine Aggregate (석탄 가스화 용융 슬래그를 잔골재로 사용하는 플라이애시 치환 콘크리트의 기초적 특성 및 수화열에 관한 연구)

  • Han, Min-Cheol;Choi, Il-Kyung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.1
    • /
    • pp.155-162
    • /
    • 2020
  • The aim of the research is to investigate the fundamental properties and heat of hydration reducing performance of the fly ash incorporated concrete mixture when the coal gas slag (CGS) from integrated gasification combined cycle (IGCC) is used as fine aggregate. From the results of the experiment, the workability was generally increased and the air content was decreased up to one to four percent with increasing the replacing ratio of CGS to fine aggregate. The compressive strength was similar or increased within five percent to the Plain mixture when the CGS was used as a fine aggregate. When the CGS and fly ash were used same time, the heat of hydration reducing performance was improved than single using cases either CGS or fly ash. Based on the results, for the concrete mixture using CSG as a portion of the combined fine aggregate, the general properties were improved and heat of hydration was decreased approximately 16 % when the fly ash was replaced 30 % to cement and the CGS was replaced less than 50 % to fine aggregate.

THE EFFECT OF AIR BUBBLES FROM DISSOLVED GASES ON THE MEMBRANE FOULING IN THE HOLLOW FIBER SUBMERGED MEMBRANE BIO-REACTOR (SMBR)

  • Jang, Nam-Jung;Yeo, Young-Hyun;Hwang, Moon-Hyun;Vigneswaran, Saravanamuthu;Cho, Jae-Weon;Kim, In S.
    • Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.91-98
    • /
    • 2006
  • There is a possibility of the production of the air bubbles in membrane pores due to the reduction in pressure during membrane filtration. The effect of fine air bubbles from dissolved gases on microfiltration was investigated in the submerged membrane bio-reactor (SMBR). The $R_{air}$ (air bubble resistance) was defined as the filtration resistance due to the air bubbles formed from the gasification of dissolved gases. From the results of filtration tests using pure water with changes in the dissolved oxygen concentration, the air bubbles from dissolved gases were confirmed to act as a foulant and; thus, increase the filtration resistance. The standard pore blocking and cake filtration models, SPBM and CFM, respectively, were applied to investigate the mechanism of air bubble fouling on a hollow fiber membrane. However, the application of the SPBM and CFM were limited in explaining the mechanism due to the properties of air bubble. With a simple comparison of the different filtration resistances, the $R_{air}$ portion was below 1% of the total filtration resistance during sludge filtration. Therefore, the air bubbles from dissolved gases would only be a minor foulant in the SMBR. However, under the conditions of a high gasification rate from dissolved gases, the effect of air bubble fouling should be considered in microfiltration.

A Study on the Gasification of Combustible Waste (가연성 폐기물의 가스화에 관한 연구)

  • 정준화
    • Journal of Environmental Health Sciences
    • /
    • v.16 no.2
    • /
    • pp.89-95
    • /
    • 1990
  • This study was investigated to the energy recovery by the pyrolysis of waste tyre. the pyrolysis of the waste tyre was made by using the pyrolysis chamber for the gasification and the combustion chamber for the combustion of the pyrolysis gas. In batch system, the amount of waste tyre was put 150kg in the pyrolysis chamber and the proper air flow rate for the stable production of the pyrolysis gas was 0.95Nm$^{3}$ /min. the production time of the pyrolysis gas was stable above 210minutes, and the stable production rate was above 3.8Nm$^{3}$ /min. The production temperature of pyrolysis gas was 170$^{\circ}$C and combustion temperature of pyrolysis gas was 1,000$^{\circ}$C. The combustible component of washing gas in pyrolysis gas of waste tyre was CO, CH$_{4}$, $C_{2}H_{6}$ and $C_{3}H_{8}$, and total amount was 22.7%. Heat value of condensed material was 9,804Kcal/kg. The average concentration of air pollutants between cyclone and scrubber was CO 420.4ppm, SO$_{x}$ 349.8ppm. NO$_{x}$ 68.Sppm, HCl 24.4ppm and Dust 240.0g / Nm$^{3}$, respectively.

  • PDF

Characteristics of Fluidized Bed Type Gasification of Kideco Coal (키데코탄의 유동층 가스화 반응 특성)

  • Bae, Dal-Hee;Jo, Sung-Ho;Shun, Do-Won;Moon, Young-Sub
    • Journal of Energy Engineering
    • /
    • v.16 no.1 s.49
    • /
    • pp.32-39
    • /
    • 2007
  • Coal pyrolysis processes vary with the origin and rank of coal. It is difficult to generalize the characteristics of coal pyrolysis reaction because the process consists of numerous reactions including pyrolysis, gasification, and combustion. To find out the optimum process condition it is necessary to determine the condition fur each coal from the smatter scale experiment. In this study pressurized ($2kg_{f}/cm^{2}$) fluidized bed, low temperature ($735{\sim}831^{\circ}C$) gasification using Kideco coal was performed. The reaction condition and product gas composition were determined from the variables including steam flow rate, coal feed rate and air flow rate. Optimum reaction condition was determined from the concentrations of $H_{2}$, and CO in the product gas. The ratio of air/coal was 4.45 and that of steam/coal was 0.21 respectively. The concentrations of CO and $H_{2}$ decreased with the increase of $CO_{2}$. It is important to control the feed rates of coal and steam because the reaction temperature rapidly increased when the combustion reaction dominates over the gasification reaction. The concentrations of CO and $H_{2}$ were 18%, 17% respectively from the continuous operating condition.