• Title/Summary/Keyword: Air fluid level

Search Result 164, Processing Time 0.024 seconds

Centrifugal Blower with High Inlet Resistance (고 흡입저항을 가진 원심 송풍기)

  • Kim, Jae-Won
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.2 s.19
    • /
    • pp.15-22
    • /
    • 2003
  • Comprehensive study on a centrifugal blower for air-purifier involving a few physical filters for percolation process has been accomplished for an optimal design of the air handling system. The filtering media causes a flow resistance for induced flows by a rotating impeller. The present methodology is to adopt PIV system for velocity measurements and wind tunnel connected with an anechoic chamber for total performance test of the blower. Trial prototypes for the blades of a rotor and casing are presented for satisfaction of both flow rate and noise level set by design objectives. Tapered blades with a special casing for a fan show good performance data. The results of velocity fields also explain the reason of improvements of the blower performance.

A Numerical Simulation of Heat Flow Field for Heat Island Effect Analysis to Air Pollutants Dispersion in Apartment Complex (아파트 단지내의 열섬효과가 대기오염물질 확산에 미치는 영향 해석을 위한 열유동장 수치모의)

  • Jang Eun-Suk
    • Journal of Environmental Science International
    • /
    • v.14 no.6
    • /
    • pp.577-582
    • /
    • 2005
  • Enormous apartment complexes in urban areas, temporary inversion state and heat island effect occur due to the strong sunshine and weak wind speeds which hinders the dispersion of air pollutants that are emitted from neighboring areas of apartment complexes. In this study, analysis were conducted by using the Fluent code based on the CFD(Computation Fluid Dynamics), including building layout, material, building height from the ground surface, the heat, analysis of flow field in the apartment complex. It was estimated that the temporal radiation inversion phenomenon during the daytime, which was caused by the weak wind speed and higher temperatures in the upper level, contributed to the stagnation of the air pollutants in the lower layer of the apartment complex.

A Study on the Radiated Noise the Prediction in the Pipe by Fluid Induced Vibration using the Radiation Efficiency and Pipe Surface Vibration (배관 표면진동과 방사효율을 이용한 배관 소음예측기법 연구)

  • Yi, Jongju;Park, Kyunghoon;Jung, Woojin;Seo, Youngsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.10
    • /
    • pp.763-769
    • /
    • 2014
  • This study is on the experiment and prediction of the pipe noise due to the internal fluid. The vibration of pipe external surface and noise in air were measured according to the internal fluid velocity and pipe type. In the experiment, the vibration and noise level of the straight pipe and rounded pipes show that the vibration and noise level are almost same. The 900 mitred pipe shows the high vibration and noise level. In the prediction of noise due to the internal flow, the method using the pipe surface vibration and radiation efficiency shows good agreement with experimental result.

Experimental Study on Drag Reduction Effects of New Non-Ionic Surfactants

  • Tae, Choon-Sub;Cho, Sung-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.4
    • /
    • pp.147-155
    • /
    • 2006
  • The drag reduction (DR) and heat transfer efficiency reduction (ER) of non-ionic surfactant were investigated as a function of fluid velocity, temperature, and surfactant concentration. An experimental apparatus consisting of two temperature controlled water storage tanks, pumps, test specimen pipe and the piping network, two flow meters, two pressure gauges, a heat exchanger, and data logging system was built. From the experimental results, it was concluded that existing alkyl ammonium surfactant (CTAC Cethyl Trimethyl Ammonium Chloride) had DR of $0.6{\sim}0.8$ at $1,000{\sim}2,000ppm$ concentration with fluid temperature ranging between $50{\sim}60^{\circ}C$. However, the DR was very low when the fluid temperature was $70{\sim}80^{\circ}C$. The new amine oxide and betaine surfactant(SAOB Stearyl Amine Oxide + Betaine) had lower DR at fluid temperatures ranging between $50{\sim}60^{\circ}C$ compared with CTAC. However, with fluid temperature ranging between $70{\sim}80^{\circ}C$ the DR was $0.6{\sim}0.8$ when the concentration level was $1,000{\sim}2,000ppm$.

Development of a Low Noise and High Efficiency Rotary Compressor with a New Muffler (신규 저소음 및 고효율 머플러 적용 회전식 압축기 개발)

  • Jarng, In-Sun;Kim, Bong-Jun;Youn, Young;Sung, Choon-Mo;Lee, Seung-Kap
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.2 s.29
    • /
    • pp.23-30
    • /
    • 2005
  • The rotary compressor is widely used in the air conditioner because it is efficient and compact. Recently, the need for silent and efficient compressors is much stronger than the past. The new type muffler was invented to reduce the noise level and to improve the efficiency. The new type muffler that has two side discharge holes and dome shape resulted in much lower overall noise level, especially noise levels around 1kHz than the old type one of one center discharge hole in the acoustic spectra. Also it showed a higher efficiency of air conditioner by lowering oil discharging amount of a compressor than old type one of a rectangular shape and two side discharge holes. The noise reduction and efficiency improvement by the new type muffler were verified by tests for votary compressors and air conditioners.

Internal Flow Analysis on an Open Ducted Cross Flow Turbine with Very Low Head

  • Wei, Qingsheng;Hwang, Yeong-Cheol;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.67-71
    • /
    • 2014
  • Recently, the cross flow turbine attracts more and more attention for its good performance over a large operating regime at off design point. This study adopts a very low head cross flow turbine that has barely been studied before, and investigates the effect of air layer on the performance of the cross flow turbine. As open duct is applied in this study and free surface model is used between the air layer and water, an engineering definition of efficiency, instead of traditional definition of efficiency, is used. As torque at the runner fluctuates up and down at a reasonable limit, statistical method is used. Pressure and water volume fraction contours are shown to present the characteristics of air-water flow. With constant air suction in the runner chamber, the water level gradually drops below the runner and efficiency of the turbine can be raised by 10 percent. All considered, the effect of air layer on the performance of turbine is considerable.

Numerical Analysis on the Coupled Operation of Ventilation Window System and Central Cooling System (창호일체형 환기시스템 및 중앙냉방시스템 연계 운영에 대한 수치해석적 연구)

  • Park, Dong Yoon;Chang, Seongju
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.4
    • /
    • pp.385-395
    • /
    • 2015
  • This study evaluated indoor environmental characteristics in an office room equipped both with ventilation window system and central cooling system. Fresh air is supplied only by the central cooling system whereas indoor air is discharged outside through both ceiling diffuser and a ventilation window system. Numerical study is conducted by changing the volumetric flow rates of exhaust ports of each system. For estimating the performance of this coupled system, $CO_2$ concentration and Predicted Mean Vote (PMV) were calculated using Computational Fluid Dynamics (CFD) simulation. The more the ceiling diffuser exhausts indoor air, the more the $CO_2$ concentration decreases. However, when the ventilation window system exhausts more indoor air, thermal comfort level gets improved in the office room with cooling system. Therefore, when the ventilation window system is operated, the coupled operation with central cooling system should be considered for enhancing indoor air quality and thermal comfort, together.

The Discharge Performance Optimization of a Forced Convection Type PCM Refrigeration Module Used in a Refrigeration Truck (냉동트럭용 강제대류방식 PCM 냉동모듈의 방냉성능 최적화에 관한 연구)

  • Lel, Xu;Kim, Wonuk;Lee, Sang-Ryoul;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.11
    • /
    • pp.624-630
    • /
    • 2013
  • A truck refrigeration system using phase change material (PCM) is expected to have a lower noise level, reduced energy cost, and much lower local greenhouse gas emission. Recently, a forced convection type PCM refrigeration module has been developed. As the operation time increases, the PCM around the air inlet melts, because of a large temperature difference between the PCM and air. Therefore, the latent heat transfer area decreases and the heat transfer rate of the module decreases even though there is a lot of PCM which does not melt around the air outlet. A computational fluid dynamic modeling of the PCM refrigeration module was developed and validated by the experiment. Using the CFD, the design parameters, such as the mass flow rate of the air and roughness of the slab, were investigated to improve the heat transfer inhomogeneity. As a result, the adoption of partial roughness on the slabs improved the heat transfer inhomogeneity and reduced a fan power.

Monitoring of Cleanliness Level in Hydraulic Systems: Obtaining Reliable On-Line data

  • Hong, Jeong-Hee;Day, Mike
    • Journal of Drive and Control
    • /
    • v.9 no.2
    • /
    • pp.28-38
    • /
    • 2012
  • Monitoring of system cleanliness levels and counting of particulate contaminant are fundamental to achieving hydraulic system reliability as any departure from the specified cleanliness level is often a precursor to future failures. On-line monitoring of cleanliness levels has the advantage of giving data both very quickly and accurately as environmental influences are eliminated. In this way, corrective actions can be promptly implemented. Most on-line instruments are sensitive to system conditions to a greater or lesser extent, but Automatic Particle Counters (APCs) working on light extinction principles are especially sensitive to the presence of optical interfaces caused by such conditions as fluid mixtures, emulsions, free water and air bubbles. These conditions give erroneous data and can result in drawing incorrect conclusions, wasting maintenance time and ultimately, reduced user confidence in cleanliness monitoring. This paper describes such conditions and shows how the correct selection of the analysis technique can result in reliable cleanliness level data.

A Study on Noise in Waste Facilities (폐기물 소각시설 내부 소음에 관한 연구)

  • Seo, Byung-Suk;Park, Ro-Gook;Jeon, Yong-Han
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.2
    • /
    • pp.15-21
    • /
    • 2020
  • Industrial facilities need design to predict and reduce noise from design to prevent and reduce noise. The purpose of this study is to predict worker's environment and evaluate safety by analyzing noise inside underground blower room and air compressor room with fluid machinery in waste facility. This waste incineration facility was analyzed based on the ground floor, ground floor blower chamber, and air compressor chamber. The results of SPL(Sound Pressure Level) analysis at 1.5m away, which are frequently used to measure the SPL as a noise source, are as follows. SPL of basement level: 46.80[dB], SPL of ground layer: 48.57[dB]. As a result, it was expected that the noise level would be considerably lower than the 8 hours 50[dB] noise exposure per day.