• Title/Summary/Keyword: Air excess ratio

Search Result 168, Processing Time 0.026 seconds

Combustion Characteristics Using a S.I. Optically Acessible Engine with SCV (SCV를 장착학 가솔린 가시화엔진에서의 연소특성)

  • 정구섭;김형준;전충환;장영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.115-123
    • /
    • 2001
  • This study describes the combustion characteristics under various condition of air excess ratio and ignition timing in a 2-valve gasoline optically accessible engine with swirl control valve(SCV). It adapted three different types of SCA(open ration 72.5%, 78%, 89%) to strengthen a swirl flow. Pressure data were acquired using pressure sensor to investigate the effect of swirl flow on combustion, and from these pressure data, IMEP(indicated mean effective pressure) and MFB(mass fraction burnt)were calculated to explain burn rate and flame speed. From acquired flame images, inspected the flame propagation direction, flame area, and flame centroid, Flame propagation direction was shown different tendency between with/without SCV, and flame area with SCV was faster and larger than that of conventional engine. Finally, the representative flame image at each crank angle were acquired by PDF method to verify flame growth process. It is found that strengthened swirl flow is more beneficial for faster and stable combustion.

  • PDF

Effect of Engine Specification and Driving Conditions on the Idle Emission Characteristics of SI Vehicles (Sl 자동차의 아이들 운전시 엔진 및 운행 조건에 따른 배출 가스 특성)

  • 류재욱;송정훈;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.70-76
    • /
    • 2002
  • This study focus on the effect of engine specification, driving conditions and the vehicle type on the idle emission characteristics. In order to obtain the characteristics of exhaust emissions, 1,260 vehicles of spark ignition engine are sampled and investigated. The exhaust emissions are measured with a CO/HC emission gas analyzer. The Sl engine vehicles are investigated by the effect of various exhaust emission parameters such as vehicle milage, engine specification, valve trains and fuels. The results show that the amount of CO and HC emission is not directly related to the driving mileage of the vehicle. However, the engine specifications and fuels such as the type of valve train and piston displacement have influence on the exhaust emissions. In addition, the LPG vehicle emits more CO and HC than gasoline vehicle. Based on the test results of SI vehicles, the influence of excess air and displacement volume are discussed.

Effects of Natural Gas Composition on Combustion Characteristics in a Gas Engine (쳔연가스 연료조성이 엔진 연소특성에 미치는 영향)

  • 이중성;유현석;윤영석;한정옥
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.32-41
    • /
    • 1999
  • Natural gas is an attractive fuel in view of environment benefits due to its flow carbon-to-hydrogen ratio. However, its compositions and properties are varied depending upon production regional groups. Therefore, study on the combustion characteristics of natural gas engines with a variety of compositions has been demanded for the efficient application of gas engines. This study aims to investigate the effects of gas composition on engine combustion characteristics. It was found that , by controlling an engine with fixed fuel nozzle area, power and heat release were subject to Wobbe Index. And at fixed excess air ratios, power and heat release were subject to low heating value of unit mixture . In addition, in case of constant nozzle area, combustion duration was found to be inversely proportional to CP(Combustion Potential), and the condition of fixed excess air ratios showed no change in combustion duration, regardless of CP.

  • PDF

The Effects of High Torque Starters on the Starting Characteristics of a Micro-hybrid Engine (고토크 스타터에 의한 마이크로 하이브리드 엔진의 시동특성 개선 효과)

  • Kim, S.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.2
    • /
    • pp.12-15
    • /
    • 2010
  • It is requested to shorten the starting duration for idle stop function equipped cars without harmful effects on the environment. Higher cranking speeds can be achieved with high torque starter. The object of this study is to develope the high torque starter and evaluate its effect on the exhaust emissions. The test was conducted on a 1.5 L, 4-cylinder, 16 valve, multipoint-port-fuel-injection gasoline engine. Engine out emissions such as HC, CO, $CO_2$, and the excess air ratios, lambda were measured using MEXA-554JK. The result showed that a high torque starter, HTS-II shortened the starting duration and reduced engine out emissions of HC, CO and improved starting performance with larger excess air ratio than that of the original starter, Org. S and a high torque starter, HTS-I.

Performance Analysis of an Inert Gas Generator for Fire Extinguishing

  • Kim, Su-Yong;Arkadiy F. Slitenko
    • 연구논문집
    • /
    • s.29
    • /
    • pp.5-15
    • /
    • 1999
  • Present study deals with performance analysis of an inert gas generator (IGG) which is to be used as an effective mean to suppress the fire. The IGG uses a turbo jet cycle gas turbine engine to generate inert gas for fire extinguishing. It is generally known that a lesser degree of oxygen content in the product of combustion will increase the effectiveness of fire suppressing. An inert gas generator system with water injection will bring advantages of suffocating and cooling effects which are considered as vital factors for fire extinguishing. As the inert gas is injected to the burning site, it lowers the oxygen content of the air surrounding the flame as well as reduces the temperature around the fire as the vapour in the inert gas evaporates during the time of spreading. Some important aspects of influencing parameters, such as, air excess coefficient. $\alpha$, compressor pressure ratio, $ pi_c$, air temperature before combustion chamber, $T_2$, gas temperature after combustion chamber, $T_3$, mass flow rate of water injection, $M_w$, etc., on the performance of IGG system are investigated. Calculations of total amount of water needed to reduce the turbine exit temperature to pre-set nozzle exit temperature employing a heat exchanger were made to compare the economics of the system. A heat exchanger with two step cooling by water and steam is considered to be better than water cooling only. Computer programs were developed to perform the cycle analysis of the IGG system and heat exchanger considered in the present study.

  • PDF

Effect of Sludge Characteristics on the Thickening of Bulking Sludge using DAF (Dissolved Air Flotation) (슬러지의 성상이 DAF(Dissolved Air Flotation)를 이용한 팽화 슬러지 농축에 미치는 영향)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.97-103
    • /
    • 2006
  • Excess sludge treatment and disposal currently represent a rising challenge for domestic or wastewater treatment plants due to economic, environmental and regulation factors. Conventional gravity sedimentation process has been widely used in sludge thickening. The operation method of the process is very simple, but the process requires long detention time for sludge thickening, uses polymers, and shows low sludge thickening efficiency. To solve the problems, we studied on DAF (Dissolved Air Flotation) system. We use bulking sludge of a paper manufacturing plant. The effects of parameters such as SVI (Sludge Volume Index), storage time, initial concentration and wet density of excess sludge were examined. The results showed that the more SVI was low, the more sludge was thickened. As storage time goes by, SVI was increased and thickening performance was deteriorated. In order to improve flotation performance at high concentration, high recycling ratio and pressure did not increase the concentration due to thickening limitation. The addition of 0.8 g/L of loess was increased flotation efficiency of 1.41 times.

Prediction of the Combustion Performance in the Coal-fired Boiler using Response Surface Method (반응표면법을 이용한 석탄 화력 보일러 연소특성 예측)

  • Shin, Sung Woo;Kim, Sin Woo;Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.27-32
    • /
    • 2017
  • The experimental design methodology was applied in the real scale coal-fired boiler to predict the various combustion properties according to the operating conditions and to assess the coal plant safety. Response surface method (RSM) was introduced as a design of experiment, and the database for RSM was provided with the numerical simulation of the coal-fired boiler. The three independent variables, high heating value of coal (HHV), overall stoichiometry excess air ratio (OST), and burner-side stoichiometry excess air ratio (BST), were set to characterize the cross section averaged NOx concentration and temperature distribution. The maximum NOx concentration was predicted accurately and mainly controlled by BST in the boiler. The parabola function was assumed for the zone averaged peak temperature distribution, and the prediction was in a fairly good agreement with the experiments except downstream. Also, the location of the peak temperature was compared with that of maximum NOx, which implies that thermal NOx formation is the main mechanism in the coal-fired boiler. These results promise the wide use of statistical models for the fast prediction and safety assessment.

An Experimental Study on the Combustion Characteristics in Low Emission Multi-Staged Oil Burner (다단연소를 이용한 저 NOx 버너의 연소특성에 관한 연구)

  • An, Guk-Yeong;Kim, Han-Seok;Jo, Eun-Seong
    • 연구논문집
    • /
    • s.27
    • /
    • pp.101-108
    • /
    • 1997
  • The characteristics of combustion and emissions in multi-staged oil burner have been experimentally studied for the various range of equivalence ratios, drop sizes and fuel formulations. Malvern system was used to measure droplet size of fuel. Light fuel oil and light fuel oil doped with pyridine($C_5H _5N$) were used to investigate the effects on fuel NOx emission. The emissions of NO and CO in exhaust gas and the flame temperatures were measured by the gas analyzer and thennocouples. NOx emissions were increased by increasing the excess air ratio (range:$lambda=1.1-1.4$) or decreasing the SMD of droplet in single-staged burner. In comparison with the single-staged burner, the emission of NOx in multi-staged burner was reduced by 50% but CO emission was slightly increased. It is found that multi-staged burner has a good capability in reducing thermal NOx resulting from the distributed heat release rate and lower flame temperature in fuel-rich and fuel-lean combustion zone. Moreover, the fuel NOx emission of the multi-staged burner is lower than that of single-staged burner, because multi-staged burner has fuel rich zone where fuel N is converted to $N_2$ more than NO. In 3-staged burner, the percentage of each stage combustion air have strong influence on emission characteristics. It is also found that NOx emission can be reduced by decreasing inner and outer air percentage or increasing middle air flow rate and CO emission is vice versa.

  • PDF

Composting Chemical Treated Hog Wastewater Excess Sludge Amended with Sawdust and Compost Biofiltration (화학적처리 양돈폐수 잉여오니와 톱밥 혼합물 퇴비화 및 퇴비탈취처리)

  • Hong Ji-Hyung;Park Keum-Joo
    • Journal of Animal Environmental Science
    • /
    • v.12 no.1
    • /
    • pp.29-34
    • /
    • 2006
  • The effects of turning frequency were examined on the efficiency of composting lime treated excess sludge amended with sawdust from the activated sludge process after a liquid/solids separation process. The raw and excess sludge from the activated sludge process associated with the hog wastewater treatment system is a significant problem and composting is an effective method far reducing the pollution potential of hog wastewater sludge. The coagulant used sludge composting and ammonia emissions from composting are not well established. The effect of compost properties such as high total carbon, C/N ratio and pH value on performance of composting sludge and biofiltration of ammonia from composting process were investigated. The ammonia emission was not significantly increased during composting. The ammonia concentrations of the exhaust air of composter were ranged from 0.5 and 7 ppm about 12 days after composting. The performance of the hog wastewater sludge composting was the most sensitive to chemical treated sludge properties such as high total carbon and high C/N ratio of the initial compost mixes. Temperature in compost and ammonia emission were not greatly affected by the turning frequency.

  • PDF

Analysis of Heat Quantity in CNG Direct Injection Bomb(1) : Homogeneous Charge (CNG 직접분사식 연소기에서의 열량해석(1) :균질급기)

  • 최승환;전충환;장영준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.17-23
    • /
    • 2004
  • A cylindrical constant volume combustion bomb is used to investigate the combustion characteristics and to analyze the heat quantity of homogeneous charge methane-air mixture under various initial pressures, excess air ratios and ignition times. As the overall pressure increase, the values of maximum combustion pressure, maximum heat release rate and cumulative heat release have been increased. But it is not very meaningful to compare with some values such as maximum combustion pressure, maximum heat release rate and cumulative heat release for different overall pressure due to the different heat energy of supplied fuel. So the each value is needed to be compared with normalized value, which is divided by the entered fuel energy. To analyze the heat quantity, some definitions including the CHR ratio, the UHC ratio and the HL ratio are needed and are calculated. As the overall pressure increase, the CHR ratios and the UHC ratios have been decreased, while the HL ratios have been increased. The CHR ratio of 300 ms has the higher value than that of 10000ms, and the HL ratios of 300 ms have a lower value.