• Title/Summary/Keyword: Air disturbances

Search Result 101, Processing Time 0.029 seconds

Numerical investigation of gaseous detonation observed in the elasto-plastic metal tubes (탄소성 금속관 내 가스 폭굉의 수치적 연구)

  • Gwak, Min-cheol;Do, Yeong-dea;Park, Jeong-su;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.85-87
    • /
    • 2012
  • We present a numerical investigation on gaseous (ethylene-air mixture) detonation in the elastoplastical metal tubes to understand the wall effects associated with the developing detonation instability. The acoustic disturbances originating from the rapidly expanding tube walls reach the detonating flame surface, thereby causing flame distortions and total energy losses. The compressible Navier-Stokes equations with equation of state for gas and elasto-plastic deformation field equations for inert tubes are solved simultaneously to understand the complex multi-material interaction in the rapidly expanding gas pipe. In order to track governing variables across the material interface, we use the hybrid particle level-set and ghost fluid methods to precisely estimate the interfacial quantities. Features observed from the deforming (thin) tube show substantially different behavior when a detonation propagates in the rigid (thick) tube with no acoustically responding wall conditions.

  • PDF

Application of a Digital PSS to 220MVA Pumped Storage Unit and Its Validation Using Real-Time Digital Simulator (청평양수 발전기의 PSS 파라메터 튜닝 및 시뮬레이터를 이용한 성능검증)

  • Shin, Jeong-Hoon;Kim, Tae-Kyun;Choo, Jin-Boo;Baek, Young-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.319-322
    • /
    • 2005
  • This paper describes practical tuning methods and testing of a digital PSS, which uses both frequency and power, with the 220MVA Chungpyung P/P #1 in the KEPCO system to enhance the damping of local modes. In the first step, the objective phase of PSS is computed through a phase leading function to provide compensation between the exciter reference point and the generator air-gap torque before tuning the PSS's time constants. In addition, eigenvalue analysis was used to determine a range of PSS's gain, whichis the more useful for field testing rather than a single gain value. The Real-Time Digital Simulator was used to verify safe operations of the PSS in the presence of disturbances, such as AVR step and three phase fault.

  • PDF

The design and production of the Vertical takeoff and landing aircraft (수직이착륙기 설계 및 제작)

  • Lee, Woong-hee;Park, Yong-su;Bae, Jae-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.4
    • /
    • pp.19-24
    • /
    • 2008
  • In this study gives detail on the composition and process of Quad-rotor blade Vehicle. It may seem simple but we have many trouble because of many subtleties. Unless designed carefully, it is very difficult to control of stability by reason of disturbances in the air and unbalance in the motor. We want to have a more stable output so add other electronics supplement, and change the battery in oder to increasing thrust. It cannot be done quickly, nor cheaply because it is more difficult than first ideas that control of Quad-rotor. But we complete manufacture of basically controllable vertical takeoff and landing aircraft.

  • PDF

Engine Idle Speed Control Using Nonlinear Sliding Mode Controller and Observer (비선형 슬라이딩 모드 제어기 및 관측기를 이용한 엔진 공회전 제어)

  • 오소력;최재원;김종식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.151-157
    • /
    • 1999
  • In this paper, an integrated nonlinear sliding mode observer and controller has been designed in order to control of an automotive engine idle speed. The primary objective of the engine idle speed control is to maintain the desired engine idle speed despite of various torque disturbances via estimating air mass flow at the location of the injector in intake manifold by using a sliding mode observer. Simulation results show that the case where both throttle angle and ignition time are used as control inputs outperforms the case where just only throttle angle is used as a control input.

  • PDF

Visualization of rotational flow using SPIV in cylindrical tank (Stereoscopic PIV 속도장 측정기법을 이용한 원통내의 회전 유동장 측정)

  • Choi Jong Ha;Yang Kun Su;Gowda B. H. L.;Sohn Chang Hyun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.44-47
    • /
    • 2004
  • Vortexing might occur during draining from tanks which reduces the rate of outflow. This phenomenon has practical relevance in the fuel feed system in space vehicles and rockets. Due to environmental disturbances rotational motion can be generated in the liquid-propellant tank, which in turn can affect the rate of outflow to the engines. The phenomenon is initialized by rotating the fluid In the experimental tank. The dip quickly develops into a vortex with an air core, which extends to the bottom port, reducing the effective cross-sectional area of the drain outlet and consequently the flow rate. Flow characteristics are investigated using SPIV(Stereoscopic Particle Image Velocimetry) method.

  • PDF

A Study on High Precision Temperature Control of an Oil Cooler for Machine Tools Using Hot-gas Bypass Method

  • Jung, Young-Mi;Byun, Jong-Yeong;Yoon, Jung-In;Jeong, Seok-Kwon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.1003-1011
    • /
    • 2009
  • This study aims at precise control of oil outlet temperature in the oil cooler system of machine tools for enhancement of working speed and processing accuracy. PID control logic is adopted to obtain desired oil outlet temperature of the oil cooler system with hot-gas bypass method. We showed that the gains of PID controller could be easily determined by using gain tuning methods to get the gain of PID controller without any mathematical model. We also investigated various gain tuning methods to design the gains of PID and compared each control performance for selecting the optimal tuning method on the hot gas bypass method through experiments. Moreover, we confirmed excellent control performance with proposed PI controller gain even though disturbances were abruptly added to the experimental system.

Design of Stable Controller to Sudden A/C Disturbance (급격한 에어콘 외란에 안정한 제어기 설계)

  • 이영춘;권대규;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.106-112
    • /
    • 2000
  • The purpose of this paper is to study on the control of the engine idle speed under sudden A/C load which is one of the most severe disturbances on engines. Three types of the closed-loop controller are developed for the stable engine idle speed control. The input of the controller is an error of rpm. The output of the controller is an ISCV duty cycle. The anticipation delay is considered to deal with the delay time of the air mass in engine. The PID, Fuzzy and PID-type Fuzzy controllers with the anticipation delay have improved the engine idle speed condition more than current ECU map table under the A/C load.

  • PDF

Basic Study on Flashover Characteristics of Power Lines by Forest Fire(II) (산불화재에 의한 전력선 섬락사고 기초연구(II))

  • Kim, C.N.;Lee, S.W.;Lee, K.S.;Kim, I.S.;Lee, D.I.;Park, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.391-394
    • /
    • 2001
  • Occurring forest fire or burning bushes beneath overhead transmission lines have caused system disturbances in many countries. In this study, various tests in the simulated condition of power lines were conducted so as to investigate the reduction in insulation strength caused by combustion flame. The results of an experimental investigation into the flashover characteristics of air dielectric strength in the presence of oil flame are reported. It is demonstrated that flame can reduce by more than half, 80% in maximum, the breakdown voltage of a model line.

  • PDF

Application a Loop Compensation type 2-DOF PID Controller tuned by Neural Network to Gas Turbine Control Loop (가스터빈 제어 루프에 대한 신경망 튜닝 루프 보상형 2-자유도 PID 제어기의 응용)

  • Kim, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.781-786
    • /
    • 1998
  • Since a gas turbine is still a significant contributor to peak time, it is very important to tune the gains of P. I. D to get a maximum power and stability within permissible limits. In the gas turbine, the main control loop must adjust the fuel flow to ensure the correct output power and frequency. but it is not easy, because the control loop is composed of many subsystems. In this paper we acquire a transfer function based on the operations data of Gun-san gas turbine and study to apply a loop compensation type 2-DOF PID controller tuning by neural-network to control loop of gas turbine to reduce phenomena caused by integral and derivative actions through simulation. We obtained satisfactory results to disturbances of subcontrol loop such as, fuel flow, air flow, turbine extraction temperature.

  • PDF

Gas turbine Control using Neural-Network 2-DOF PID Controller

  • Kim, Dong-Hwa
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.61-66
    • /
    • 1998
  • Since a gas turbine is made use of generating electricity for peak time, it is a very important to operate a peak time load with safety. The main components of a gas turbine are the compressor, the combustion chamber and the turbine. So, there also must be modeled a component of gas turbines for the control with safety but it is not easy. In this paper we acquire a transfer function based on the operations data of Gun-san gas turbine and study to apply Neural-Network 2-DOF PID controler to control loop of gas turbine to reduce phenomena caused by integral and derivative actions through simulation. We obtained satisfactory results to disturbances of subcontrol loop such as, fuel flow, air flow, turbine extraction temperature.

  • PDF