• Title/Summary/Keyword: Air diffusion

Search Result 885, Processing Time 0.043 seconds

A Study on the Comparison of Thermal Comport Performance Indices for Cooling Loads in the Classroom (학교건물에서 냉방부하에 따른 열적 쾌적성 평가지표 비교 연구)

  • Noh, Kwang-Chul;Oh, Myung-Do
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1274-1279
    • /
    • 2004
  • We performed the numerical study on the comparison of thermal comport performance indices for cooling loads in the classroom when the 4-way cassette air-conditioner is mounted on the ceiling. We investigated the velocity and the temperature distribution of the classroom as with respect to the variation of the air diffusion angle of the air-conditioner. Air diffusion performance index and Predicted mean vote were used for analyzing the characteristics of the thermal comport in the classroom and comparing their values each other. From the numerical results, we knew that the thermal comport is largely affected by the air diffusion angle and velocity of the air-conditioner. And we also found out that the qualitative tendency of the distribution between Air diffusion performance index and Predicted mean vote is very similar in all occupied zone.

  • PDF

Computer Simulation on the Thermal Environment by the Diffusion temperature and Diffusion Angle of Ceiling Type Air Conditioner in Classroom (교실에서의 천장형 냉난방기의 취출온도 및 취출각도에 따른 열환경 시뮬레이션)

  • Park, Hyo-Soon;Park, Seung-Ik;Lee, Sang-Hyeok;Lee, Kam-Gyu
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.4 no.4
    • /
    • pp.1-18
    • /
    • 2004
  • Research has been carried out to study thermal environment in a classroom under three kinds of air diffusion temperature and six kinds of air diffusion direction for ceiling type air conditioner. The velocity and temperature distributions of air in the room calculated by 3-dimensional numerical method(PHOENICS), This present study was also conducted to calculate the Air Diffusion Performance Index(ADPI) for cooling conditions and Predicted Percentage of Dissatisfied(PPD) for heating conditions. This analysis shows that the optimum angle of ceiling type air conditioner's diffusion is $15{\sim}30^{\circ}$ for cooling mode and about $15{\sim}45^{\circ}$ for heating mode in these calculating conditions. And also analysis has been carried out to evaluate thermal comfort of vertical and horizontal cross section of classroom.

  • PDF

Pollutant Emission Characteristics of Double-Concentric Diffusion Flame (이중 확산 연소장에서의 오염물질 배출 특성)

  • 김종현;이근오;이창언
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.43-49
    • /
    • 2002
  • The NOx emission characteristics of double-concentric diffusion flames and normal diffusion flames fueled with CH$_4$ were studied. Experimental and numerical investigations were carried out for double-concentric diffusion flame with varying central air flow rate and normal diffusion flame. The Emission indices of NOx(EINOx) were measured by chemiluminescent method and calculated by numerical model based on detailed chemistry. From the comparison between double-concentric diffusion flames and normal diffusion flames, the results show that EINOx of double-concentric diffusion flames are lower than normal diffusion flame, because of Prompt EINOx was decreased. EINOx of double-concentric diffusion flames increase with central air flow rate increasing.

Realtime Air Diffusion Prediction System

  • Kim Youngtae;Kim Tae KooK;Oh Jai-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.88-90
    • /
    • 2003
  • We implement Realtime Air Diffusion Prediction System which is designed for air diffusion simulations with four-dimensional data assimilation. For realtime running, we parallelize the system using MPI (Message Passing Interface) on distributed-memory parallel computers and build a cluster computer which links high-performance PCs with high-speed interconnection networks. We use 162­CPU nodes and a Myrinet network for the cluster

  • PDF

A Study on Dependence of Smoke Emission in Diesel Engines Upon Diffusion Combustion (디젤기관의 스모크배출의 확산연소 의존성에 관한 연구)

  • 한성빈;문성수;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.397-404
    • /
    • 1994
  • Smoke is emitted in diesel engines because fuel injected into the high-temperatured and high-pressured combustion chamber burns with its mixture with insufficient oxygeny. In consideration of air pollution, above all, it is necessary to illuminate the cause of smoke emission in diesel engines. The smoke emission, which is characteristic of diffusion combustion in diesel engines, results from pyrolysis of fuel not mixed with air. Therefore the smoke emission is dependent on diffusion combustion quantity, which is in turn controlled by engine parameter. The study aims at making clear and interpreting the interdependence of smoke emission in diesel engines with heat released within combustion chamber, camparing diffusion combustion quantity according to each engine parameter (air fuel ratio, injection timing, and engine speed), and showing the relation between smoke emission and fraction of diffusion combustion through experiment.

Thermal Environment Analysis by the Diffusion Direction with Ceiling Type Air Conditioner of the Classroom (학교 교실의 천장형 에어컨 토출각도에 따른 온열환경 해석)

  • AHN, Chul-Lin;KIM, Dong-Gyue;KUM, Jong-Soo;PARK, Hee-Ouk;CHUNG, Yong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.17 no.2
    • /
    • pp.145-154
    • /
    • 2005
  • It is necessary to develop new air-conditioning method which can be satisfied individual separated space and request of occupants. The indoor thermal environment and flow field are investigated both experimentally and numerically. This study concentrated on analysis of indoor thermal environment by diffusion direction of ceiling type air conditioner of the classroom. The velocity and temperature distribution of air in the room calculated by 3-dimensional method, which include the effect of insulation of the building and outdoor state. This analysis shows that optimum diffusion direction is $30^{\circ}$ to increase thermal comfort in winter and optimum diffusion direction is $15^{\circ}$ to increase thermal comfort in summer.

Blow-off and Combustion Characteristics of a Lifted Coaxial Diffusion Flame (동축 확산 부상화염의 Blow-off와 연소 특성)

  • Kwark, Ji-Hyun;Jun, Chung-Hwan;Jang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1089-1096
    • /
    • 2003
  • An experiment was performed to investigate lift-off, blow-off and combustion characteristics of a lifted coaxial diffusion flame according to fuel jet and air velocity. A jet diffusion flame which is attached on the nozzle rim begins to be lifted with increase of air velocity, and finally becomes blow-off at higher air velocity. In experiment, blow-off limit increased with increase of fuel jet velocity, however lift-off occurred at lower air velocity. Flame structure and combustion characteristics were examined by schlieren photos, temperature distributions and emission concentration distributions. Flame temperature became higher at midstream and its RMS became larger at up and downstream with increase of air velocity. Local NO concentration decreased but $CO_2$concentration increased with increase of air velocity, which shows combustion reaction becomes close to be stoichiometric at higher air velocity in spite of lift-off.

Numerical Simulation of Flow Field and Air Pollutatnts Concentration in Kwangyang Bay (광양만권의 유동장 및 대기오염농도예측)

  • 정용현
    • Journal of Environmental Science International
    • /
    • v.9 no.5
    • /
    • pp.397-402
    • /
    • 2000
  • Numerical simulation model using nesting method and considering topographic features was developed to predict atmospheric environments atmospheric flow temperature and diffusion of air pollutants in Kwangyang bay where having complex areas of point sources Korea. In addition developed simulation model was used tracing of spreading range of pollutants when a gas leaks suddenly from Yeo-cheon industrial complex. by comparing the measured and calculated data on atmospheric flow temperature and diffusion of air pollutants the results showed that this model can be well applied and complicated topography affected the diffusion of air pollutants.

  • PDF

Numerical Simulation on Characteristics of Laminar Diffusion Flame Placed Near Wall in Microgravity Environment (미소중력 환경내의 벽면 근방 확산 화염 특성에 관한 수치 해석)

  • Choi Jae-Hyuk;Fujita Osamu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.140-149
    • /
    • 2006
  • Characteristics of a laminar diffusion flame placed near wall in microgravity have been numerically analyzed in a two-dimension. The fuel for the flame is $C_2H_4$. The flame is initiated by imposing a high temperature ignition source. The flow field, temperature field, and flame shape in microgravity diffusion flame are detailed. Especially, effects of surrounding air velocity and fuel injection velocity on the microgravity diffusion flame have been discussed accounting for standoff distance. And, the effect of curvature rate has been also studied. The results showed that velocities in a diffusion flame were overshoot because of volumetric expansion and distribution of temperature showed regularity by free-buoyancy This means that the diffusion flame in microgravity is very stable, while the flame in normal gravity is not regular and unstable due to buoyancy. Standoff distance decreases with increase in surrounding air velocity and with decrease in fuel injection velocity. With increasing curvature rate, the position of reaction rate moves away the wall.

Analysis about CO Diffusion Change Caused by Climate Change Using CALPUFF (CALPUFF 모델을 이용한 기후변화에 따른 일산화탄소의 대기오염 영향 분석)

  • Ha, Minjin;Lee, Taekyeong;Lee, Im Hack;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.8 no.2
    • /
    • pp.81-89
    • /
    • 2017
  • In this study CALPUFF was used to estimate the influence of temperature rise, according to the observation value of temperature rise based RCP scenario, on meteorological elements (wind direction, wind speed, mixing height) and the change of pollutant diffusion. According to the result. applying estimated value of year 2050 temperature rise, the mixing height is increased as per the temperature rise, so the range of atmospheric diffusion is widened. In summer case, by applying temperature rise of $4^{\circ}C$ and comparing with before applying temperature rise, there was change of diffusion range as per the change of temperature between 10 AM to 11 PM. And the range of diffusion was wider than that of before temperature rise. In winter case, by applying estimated value of temperature rise, $2.3^{\circ}C$, diffusion range has been changed between 8 AM to 4 PM, showing different diffusion aspect from summer. Also, according to the result of air pollution level assessment with temperature rise, it was proved that the ratio of area with increasing air pollution level has been getting higher by increase of temperature.