• Title/Summary/Keyword: Air defense systems

Search Result 158, Processing Time 0.024 seconds

A Roots Method in GI/PH/1 Queueing Model and Its Application

  • Choi, Kyung Hwan;Yoon, Bong Kyoo
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.3
    • /
    • pp.281-287
    • /
    • 2013
  • In this paper, we introduce a roots method that uses the roots inside the unit circle of the associated characteristics equation to evaluate the steady-state system-length distribution at three epochs (pre-arrival, arbitrary, and post-departure) and sojourn-time distribution in GI/PH/1 queueing model. It is very important for an air base to inspect airplane oil because low-quality oil leads to drop or breakdown of an airplane. Since airplane oil inspection is composed of several inspection steps, it sometimes causes train congestion and delay of inventory replenishments. We analyzed interarrival time and inspection (service) time of oil supply from the actual data which is given from one of the ROKAF's (Republic of Korea Air Force) bases. We found that interarrival time of oil follows a normal distribution with a small deviation, and the service time follows phase-type distribution, which was first introduced by Neuts to deal with the shortfalls of exponential distributions. Finally, we applied the GI/PH/1 queueing model to the oil train congestion problem and analyzed the distributions of the number of customers (oil trains) in the queue and their mean sojourn-time using the roots method suggested by Chaudhry for the model GI/C-MSP/1.

A Study on the Flight Vibration Specification of High Speed Vehicle using Response Analysis (응답해석을 이용한 고속비행체의 비행진동규격 연구)

  • Hwang, Dongkee;Song, Ohseop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.723-730
    • /
    • 2018
  • A well-designed flight vibration specification enables the optimum weight design of the Surface-to-Air or Air-to-Air Missile, improves the maneuverability of the flight vehicle, improves the engagement of target, and increases the price competitiveness of the components and the missile system. Conventional flight vibration specifications are used by using a somewhat higher standard as suggested in MIL-STD-810C, or based on accumulated data from developed similar missile systems. In this study, we confirmed the validity of FEA response analysis by comparing response data obtained by FEA and response data of real product. Also we proposed that each specification that reflects the structural characteristics of the place where the components are mounted is required instead of verifying all the components by a single flight vibration specification.

Development of Augmentation Method of Ballistic Missile Trajectory using Variational Autoencoder (변이형 오토인코더를 이용한 탄도미사일 궤적 증강기법 개발)

  • Dong Kyu Lee;Dong Wg Hong
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.145-156
    • /
    • 2023
  • Trajectory of ballistic missile is defined by inherent flight dynamics, which decided range and maneuvering characteristics. It is crucial to predict range and maneuvering characteristics of ballistic missile in KAMD (Korea Air and Missile Defense) to minimize damage due to ballistic missile attacks, Nowadays, needs for applying AI(Artificial Intelligence) technologies are increasing due to rapid developments of DNN(Deep Neural Networks) technologies. To apply these DNN technologies amount of data are required for superviesed learning, but trajectory data of ballistic missiles is limited because of security issues. Trajectory data could be considered as multivariate time series including many variables. And augmentation in time series data is a developing area of research. In this paper, we tried to augment trajectory data of ballistic missiles using recently developed methods. We used TimeVAE(Time Variational AutoEncoder) method and TimeGAN(Time Generative Adversarial Networks) to synthesize missile trajectory data. We also compare the results of two methods and analyse for future works.

A Study on the Improvement of Naval Combat Management System for the Defense of Drone

  • Ki-Chang Kwon;Ki-Pyo Kim;Ki-Tae Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.93-104
    • /
    • 2023
  • Recently, the technology of drones is developing remarkably. The role of military drones is so great that they can cause serious damage to the enemy's important strategic assets without any damage to our allies in all battlefield environments (land, sea, air). However, the battleship combat management system currently operated by the Korean Navy is vulnerable to defense because there is no customized defense system against drones. As drones continue to develop, they are bound to pose a major threat to navy in the future. This paper proposes a way for the warfare software of naval combat management system sets a combat mode suitable for anti-drone battle, evaluates the threat priority in order to preemptively respond to drone threats and eliminate drone threats through automatic allocation of self-ship-mounted weapons and sensors, and through a test of the improved warfare software in a simulated environment, it was proved that the time to respond to the drone was improved by 62%.

Development Technology Trends of Propulsion System in Unmanned Air Vehicles (무인기 추진시스템 개발 기술 동향)

  • Nak-Gon Baek;Juhyun Im
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.95-103
    • /
    • 2024
  • The propulsion technology used in unmanned Aerial Vehicles (UAVs)—which represent one of the most important development directions in aviation—is significantly related to their flight performance. This review paper discusses the different types of propulsion technologies used in unmanned aerial vehicles, namely the internal combustion engine (reciprocating, rotary, and gas turbine engines), the hybrid system, and the pure electric system. In particular, this paper presents and discusses the classification, working principles, characteristics, and critical technologies of these types of propulsion systems. These findings are expected to be helpful in establishing a development framework, comprehensive views, and multiple comparisons of future UAV propulsion systems.

Development of Performance Evaluation Method for Mission Autonomy Software based on UxAS (UxAS 기반 임무 자율화 소프트웨어 성능 평가 기법 개발)

  • Dong-geon Han;Yun-geun Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.331-337
    • /
    • 2024
  • Mission autonomy system should be embedded on UAV (unmanned aerial vehicle) for mosaic warfare where UAVs autonomously assign tasks to themselves. UxAS (unmanned x-systems autonomy service) proposed by Air force research laboratory is mission autonomy system for unmanned platforms. UxAS has extensible structure composed of numerous module services. We have developed mission autonomy system based on UxAS that performs mission allocation and path planning. In this paper, We present a method of analyzing and evaluating the mission autonomy software according to the performance evaluation index.

A Study of Testing Embedded System Software Based on Failure Mechanisms (고장메커니즘 기반의 임베디드 시스템 SW 테스트 방법에 관한 연구)

  • Jeong, Si-Young;Jang, Joong-Soon;Lee, Sang-Yong
    • Journal of Applied Reliability
    • /
    • v.7 no.4
    • /
    • pp.137-148
    • /
    • 2007
  • Rapid increase of embedded systems in electronic and mechanical control systems requires reliable and error-free embedded software. State-based testing methods like FSM are usually used to assure the reliability of embedded software. However, because of possibility of explosion of test cases, only partial test cases are considered in practical tests, which cannot guarantee that all the possible errors are investigated. This study proposes a test procedure based on failure mechanisms that may occur in embedded systems, which can not only assure that certain kinds of possible errors are detected but reduce the testing time. The proposed procedure is applied to vehicle air control system.

  • PDF

A Study on Deep Learning based Aerial Vehicle Classification for Armament Selection (무장 선택을 위한 딥러닝 기반의 비행체 식별 기법 연구)

  • Eunyoung, Cha;Jeongchang, Kim
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.936-939
    • /
    • 2022
  • As air combat system technologies developed in recent years, the development of air defense systems is required. In the operating concept of the anti-aircraft defense system, selecting an appropriate armament for the target is one of the system's capabilities in efficiently responding to threats using limited anti-aircraft power. Much of the flying threat identification relies on the operator's visual identification. However, there are many limitations in visually discriminating a flying object maneuvering high speed from a distance. In addition, as the demand for unmanned and intelligent weapon systems on the modern battlefield increases, it is essential to develop a technology that automatically identifies and classifies the aircraft instead of the operator's visual identification. Although some examples of weapon system identification with deep learning-based models by collecting video data for tanks and warships have been presented, aerial vehicle identification is still lacking. Therefore, in this paper, we present a model for classifying fighters, helicopters, and drones using a convolutional neural network model and analyze the performance of the presented model.

Pursuit-evasion as a dynamic game

  • Imado, Fumiaki;Ichikawa, Akira;Kanai, Kimio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.474-479
    • /
    • 1993
  • A study about two-dimensional pursuit-evasion dynamic games is presented and discussed. A pursuer tries to intercept an evader by a strategy based on proportional navigation guidance, while the evader tries to maximize a miss distance by the optimal control. The study is applied to a ball game and an air-combat game. The results show the same features exist in both games, therefore the study will be able to apply for general two dimensional dynamic games. In the ball game, the study is extended to cases where a goal exists, while in the air-combat game, some three-dimensional problems are solved and the results are also shown.

  • PDF

Mixed Control with Aerodynamic Fin and Side Thruster Applied to Air Defense Missile

  • Chanho Song;Kim, Yoon-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.148.4-148
    • /
    • 2001
  • This paper shows an autopilot design example with simulation results for a medium range surface-to-air missile used to intercept fast maneuver targets. The missile is assumed to use both aerodynamic fins and side thrusters to achieve fast time response. The steady-state maneuver capability of the missile is assumed to be enough at high altitude to engage usual maneuvering targets. Side thruster is used to get an extremely rapid acceleration response at high altitude where the missile´s aerodynamic control effectiveness is weak. The strategy of control design is firstly to employ side thrusters to achieve a rapid response and then to hand-over the control to the aerodynamic fins to maintain the desired acceleration command in the steady state ...

  • PDF