• Title/Summary/Keyword: Air conditioning control method

Search Result 202, Processing Time 0.031 seconds

Control of the Absorption Air Conditioning System by Using Steepest Descent Method (최속 강하법을 이용한 흡수식 냉동공조시스템 제어)

  • Han, Do-Young;Kim, Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.495-501
    • /
    • 2003
  • Control algorithms for the absorption air conditioning system may be developed by using dynamic models of the system. The simplified effective dynamic models, which can predict the dynamic behaviors of the system, may help to develop effective control algorithms for the system. In this study, control algorithms for an absorption air conditioning system were developed by using a dynamic simulation program. A cooling water inlet temperature control algorithm, a chilled water outlet temperature control algorithm, and a supply air temperature control algorithm, were developed and analyzed. The steepest descent method was used as an optimal algorithm. The simulation results showed energy savings and the effective controls of an absorption air conditioning system.

The Optimal Control of an Absorption Air Conditioning System by Using the Steepest Descent Method

  • Han Doyoung;Kim Jin
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.3
    • /
    • pp.123-130
    • /
    • 2004
  • Control algorithms for an absorption air conditioning system may be developed by using dynamic models of the system. The simplified effective dynamic models, which can predict the dynamic behaviors of the system, may help to develop effective control algorithms for the system. In this study, control algorithms for an absorption air conditioning system were developed by using a dynamic simulation program. A cooling water inlet temperature control algorithm, a chilled water outlet temperature control algorithm, and a supply air temperature control algorithm, were developed and analyzed. The steepest descent method was used as an optimal algorithm. Simulation results showed energy savings and the effective controls of an absorption air conditioning system.

An Analysis of the Optimal Control of Air-Conditioning System with Slab Thermal Storage by the Gradient Method Algorithm (구배법 알고리즘에 의한 슬래브축열의 최적제어 해석)

  • Jung, Jae-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.8
    • /
    • pp.534-540
    • /
    • 2008
  • In this paper, the optimal bang-bang control problem of an air-conditioning system with slab thermal storage was formulated by gradient method. Furthermore, the numeric solution obtained by gradient method algorithm was compared with the analytic solution obtained on the basis of maximum principle. The control variable is changed uncontinuously at the start time of thermal storage operation in an analytic solution. On the other hand, it is showed as a continuous solution in a numeric solution. The numeric solution reproduces the analytic solution when a tolerance for convergence is applied severely. It is conceivable that gradient method is effective in the analysis of the optimal bang-bang control of the large-scale system like an air-conditioning system with slab thermal storage.

Analysis of Economics through Control Method of Heat Source Equipment in Seasonal Air conditioning Building

  • Park, Yool;Kim, Samuel;Jung, Soon-Sung
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.4
    • /
    • pp.209-217
    • /
    • 2003
  • The term “energy saving is economical” is appropriate for the national view point and for design and assessment of one system, but not appropriate when choosing the system by comparing alternative systems in the early design step. Sometimes, non-energy saving system is more economical than energy saving system because of the price of electricity, gas or oil, which are used for operating the air conditioning system. Therefore, when designing a system, we should consider the efficient alternatives through economic assessment of energy saving method. However, research on non-operating number control of the system is not sufficient because it is more common to use operating number control of the system for most economic assessment of air conditioning systems. For this reason, this research can provide the economic operating number control method as basic design data. The data obtained through analysis of life cycle cost based on amount of yearly energy use, are produced by system simulation of HASP/ACLD/8501 and HASP/ACSS/8502 for six alternative heating$.$cooling systems based on seasonal air conditioning system, which is widely used for medium and large size office buildings in Busan.

Control Strategy for Cold Air Distribution System (저온송풍 공조시스템의 열원 제어)

  • Jeong, Seok-Kwon;Kim, Dong-Gyu;kim, Jong-Soo;Park, Jong-Il
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.480-483
    • /
    • 2008
  • The cold-air distribution system is expected as an efficient method to reduce energy consumption in the air-conditioning system. We introduced some control strategies for the system by summarizing some references in the view point of energy saving. Direct digital control is specially emphasized as an important control technique for the system. Some drawbacks which habe been conventionally mentioned to apply the cold-air distribution to real fields can be solved by using the technique. The control strategy which is introduced in here will be available to build control system for the air-conditioning based on the cold-air distribution for energy saving.

  • PDF

Life Cycle Costing through Operating Number Control of Air Conditioning Systems in Office Buildings (사무소 건축물의 공조시스템 대수제어 여부에 따른 LCC 분석)

  • Park, Ryul;Jung, Soon-Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.981-988
    • /
    • 2002
  • Generally, the term "energy saving is economical" is appropriate for the national view point and for design and assessment of one system, but not appropriate when choosing the system by comparing alternative systems in the early design step. Sometimes, non-energy saving system is more economical than energy saving system because of the price of electricity, gas or oil, which are used for operating the air conditioning system. Therefore, when designing the system, we should consider the efficient alternatives through economic assessment of energy saving method. However, research on non-operating number control of the system is not sufficient because it is more common to use operating number control of the system for most economic assessment of air conditioning system. For this reason, this research can provide the economics through operating number control as basic design data. The data obtained through assesment of Life Cycle Cost based on amount of yearly energy use, were produced by system simulation of HASP/ACLD/8501 and HASP/ACSS/8502 for six alternative heating/cooling systems based on constant air volume conditioning system, which is widely used for medium and large office buildings in Busan.

Comparison of Cooling-Energy Performance Depending on the Economizer-Control Methods in an Office Building (이코노마이저 제어 방법에 따른 사무소 건물의 냉방 에너지 성능 비교)

  • Son, Jeong-Eun;Hyun, In-Tak;Lee, Jea-Ho;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.432-439
    • /
    • 2015
  • Current building procedures seek to minimize external air supplies to reduce the energy consumption of air conditioning, resulting in a high dependency on mechanical ventilation. We therefore studied an economizer-cycle system, whereby the introduction of external air saves energy. We analyzed different economizer-control methods, addressing mixed-air temperatures and outdoor-air fractions according to outdoor-air temperatures; also, we analyzed the energy consumption of the three economizer-cycle control types using detailed EnergyPlus simulation modeling. A differential enthalpy control method showed a lower energy consumption range from 5.8% to 6.2% than that of other methods during the simulated period. A differential dry-bulb control method showed a 12.7% lower energy consumption than the no-economizer method in the intermediate period, but also showed 7.1% more energy consumption during the summer period. When latent heat was not removed due to high summer humidity, we found a significant level of resultant energy consumption.

The High-side Pressure Setpoint Algorithm of a $CO_2$ Automotive Air Conditioning System by using a Lagrange Interpolation Method and a Neural Network (라그랑즈 보간법과 신경망을 이용한 $CO_2$ 자동차에어컨시스템의 고압설정알고리즘)

  • Han, Do-Young;Noh, Hee-Jeon
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.29-33
    • /
    • 2007
  • In order to protect the environment from the refrigerant pollution, the $CO_2$ may be regarded as one of the most attractive alternative refrigerants for an automotive air-conditioning system. Control methods for a $CO_2$ system should be different because of $CO_2$'s unique properties as a refrigerant. Especially, the high-side pressure of a $CO_2$ system should be controlled for the effective operation of the system. In this study, the high-side pressure setpoint algorithm was developed by using a neural network and a Lagrange interpolation method. These methods were compared. Simulation results showed that a Lagrange interpolation method was more effective than a neural network in the respect of its easiness of programming and shorter execution time.

  • PDF

A Study on the Dehumidification Control to Prevent Condensation for Radiant Floor Cooling (바닥복사냉방의 결로방지를 위한 제습제어에 관한 연구)

  • 김용이;김광우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.2
    • /
    • pp.137-143
    • /
    • 2003
  • In the forming of an integrated system of radiant floor cooling and dehumidifying, chilled coil can be used for cooling and dehumidification. Therefore, it is necessary to find the efficient control method which can eliminates latent load efficiently. This study has been conducted to find this method by dividing the dehumidification system into 3 types according to the control variables and analyzing characteristics of each system. To prevent the floor surface condensation, the amount of condensation can be manipulated by water temperatures, water flow rates in chilled coil, and air flow rates passing by it. So dehumidification system control can be divided into constant air flow control and variable air flow control. Regarding dehumidification control, variable air flow control, which eliminates latent load rather than sensible load, is preferable to constant flow control.

Study of Flooding Prevention on Cathode Gas Diffusion Layer for Dynamic Load Fuel Cell

  • Choi, Dong-Won;You, Jin-Kwang;Rokhman, Fatkhur;Bakhtiar, Agung;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.270-273
    • /
    • 2011
  • Water management is important in proton exchange membrane fuel cell because the water balance has a significant impact on the overall fuel cell system performance. In fuel cell vehicle, the vehicle's power demand is dynamic; therefore, the dynamic water management system is required. This present study proposes a method to control the humidity of the input air in cathode side of the fuel cell vehicle. The simulation using several driving cycles shows the proposed air humidification control obtains a relatively good result. The liquid saturation level is seen constant at the target level although still there are small deviations at driving cycles which having averagely high power demands.

  • PDF