• 제목/요약/키워드: Air Vent

검색결과 164건 처리시간 0.023초

엘리베이터 카 내부 기류분포에 관한 열 유동해석 (Thermal and Fluid Analysis on Air Distribution in a Elevator Car)

  • 정경택;이중섭
    • 한국기계가공학회지
    • /
    • 제19권1호
    • /
    • pp.56-62
    • /
    • 2020
  • The purpose of this study is to observe the visualization of the flow field for air flow distributed in the car from the ventilation fan installed in the ceiling of the passenger elevator car through the numerical analysis using computational fluid dynamics. STAR-CCM+, which is a code used for the numerical analysis, was used to predict the airflow distribution inside the elevator car. The numerical analysis of the distribution of the air current in the elevator was carried out. As a result, the analysis results for each point and the visualization of the air current distribution and the temperature distribution in the elevator car and were obtained. It was found that heat transfer was actively occurring inside the car due to the influence of the flow field discharged from the ventilation vent installed in the ceiling in the elevator car, and especially the convection heat transfer of Model-2 was more active than that of Model-1. As a result, the temperature distribution inside the car was found to be relatively low. In addition, the temperature distribution at a cross-section of 1700mm height in the elevator car shows that Model-2 is the location of the ventilation vent which makes people feel more comfortable.

Outpatient Drainage Therapy with a Thoracic Vent for Traumatic Pneumothorax due to Bull Attack

  • Sano, Atsushi;Tsuchiya, Takehiro;Nagano, Masaaki
    • Journal of Chest Surgery
    • /
    • 제47권6호
    • /
    • pp.563-565
    • /
    • 2014
  • Outpatient drainage therapy is generally indicated for spontaneous pneumothoraces. A 63-year-old man, who had been attacked by a bull sustaining injuries on the right side of his chest, was referred to the emergency room with dyspnea. His chest X-ray showed a small pneumothorax. The next day, a chest X-ray demonstrated that his pneumothorax had worsened, although no hemothorax was identified. Outpatient drainage therapy with a thoracic vent was initiated. The air leak stopped on the third day and the thoracic vent was removed on the sixth day. Thoracic vents can be a useful modality for treating traumatic pneumothorax without hemothorax.

초음속 유동 내 벤트 혼합기의 형상적 특성에 따른 성능 연구 (A Performance Study of Vent Mixer with Geometric Characteristics in Supersonic Flow)

  • 김채형;정인석
    • 한국항공우주학회지
    • /
    • 제37권1호
    • /
    • pp.69-75
    • /
    • 2009
  • 본 논문은 새로운 개념의 초음속 혼합기인 벤트 혼합기의 형상적 특성에 따른 공력 특성을 연구하였다. 홀의 크기는 2 mm이며 혼합기 벽면에서 2 mm 떨어진 곳에 위치한 모델(case 1)과 혼합기 벽면 뒤쪽에 위치한 모델(case 2)의 경우 같은 전압력 회복율을 보였으며, 홀의 크기를 반으로 줄인 1 mm(case 3) 모델은 cases 1, 2에 비해 낮은 전압력 회복율을 보였다. 재순환 영역의 크기는 cases 1-3은 같지만 전단층 두께는 cases 1, 2가 case 3 보다 두꺼웠다. 재순환 영역 내 압력 손실의 경우 cases 1, 2은 case 3에 비해 낮은 압력 손실과 높은 속도 구배를 보였으며, 이는 재순환 영역 내 공기와 연료의 혼합을 증대시키는 요인이다. 재순환 영역 내로 유입 되는 유동에 의해 형성되는 박리 버블은 연소기의 전압력 회복율과 재순환 영역 내 압력 분포와 순환 유동에 영향을 미친다. 따라서 박리 버블 형성에 영향을 주는 유입 공기 유량이 벤트 혼합기 성능에 주요한 영향을 미치는 것을 알 수 있다.

수치해석에 의한 고압다이캐스팅용 금형설계 및 주조공정해석 (Analysis of the High Pressure Die Casting Process by Computer Simulation)

  • 이창호;최재권;남태운
    • 한국주조공학회지
    • /
    • 제20권6호
    • /
    • pp.400-406
    • /
    • 2000
  • Computer simulation for the predictions of casting defects is very important to produce high quality castings with less cost. Complicate shaped Al solenoid housing part was selected to be cold chamber die cast and a numerical simulation technique was applied for the optimization of the chill vent position and gating. A first design led to insufficient central flow. This flow left the last filled areas falling into the inner portion of the part. And last filled area did not fit the chill vent position. So these resulted in a high possibility of air entrapment in the casting and the design was not proper for the part. The design was improved by using a proper gating system, a more chill vent and proper overflow positions. New design provided a homogenous mold filling pattern and the last filled areas that being located at the overflow and chill vent. Casting plan which produce good quality solenoid housing part was established by using the computer simulation.

  • PDF

디스크 브레이크의 마찰열 접촉거동에 관한 트라이볼로지적 연구 - 벤트홀의 방열효과를 중심으로 - (Tribological Analysis on the Contact Behaviors of Disk Brakes Due to Frictional Heatings -Cooling Effects By Vent Holes-)

  • 김청균;황준태
    • Tribology and Lubricants
    • /
    • 제15권2호
    • /
    • pp.199-205
    • /
    • 1999
  • Using a coupled thermal-mechanical analysis, the thermal distortion of the ventilated disk brakes has been investigated based on the air cooling effects during 15 braking operations. The FEM results show that the bendings and distortions of the disk toward the left side are decreased, but the sinusoidal distortion of the disk rubbing surface along the arc length of the vent hole is highly increased by increasing the convective air cooling effects, which is heavily related to the squeal, wear and micro-thermal crackings at the rubbing surfaces due to uneven dissipation rates of friction heatings.

수직갱이 설치된 터널내 화재시 연기거동에 관한 실험적 연구 (An Experimental Study of Smoke Movement in Tunnel Fires with a Vertical Shaft)

  • 이성룡;유홍선;김충익
    • 설비공학논문집
    • /
    • 제16권2호
    • /
    • pp.135-141
    • /
    • 2004
  • The present paper concerns a smoke movement in a tunnel fire with a vertical shaft. The model tunnel measured 13.4m long, 0.4m wide and 0.4m high. The cross section is 1: 20 of a full scale tunnel. Ethanol was used as a fuel. The fire size in model tests varied from 1.35 kW to 13.37 kW, which corresponds to full scale fires of 2.41 to 23.91 MW. Smoke front velocity and temperatrue were decreased due to the vertical shaft install. Temperature was reduced maximum about 2$0^{\circ}C$ at ceiling and about 23$^{\circ}C$ at vertical position. CO concentration was reduced as the vent width widened. When vent width was more than 15 cm, CO concentration was not reached 100 ppm. Descent degree of the smoke layer was confirmed through the visualization.

거대 화상용 PIV 시스템을 이용한 실차 내부 공기벨트 토출흐름의 속도장 측정 연구 (PIV Measurements of Ventilation Flow from the Air Vent of a Real Passenger Car)

  • 이진평;김학림;이상준
    • 한국가시화정보학회지
    • /
    • 제7권1호
    • /
    • pp.3-8
    • /
    • 2009
  • Most vehicles have a heating, ventilating and air conditioning (HVAC) device to control the thermal condition and to make comfortable environment in the passenger compartment. The improvement of ventilation flow inside the passenger compartment is crucial for providing comfortable environment. For this, better understanding on the variation of flow characteristics of ventilation air inside the passenger compartment with respect to various ventilation modes is strongly required. Most previous studies on the ventilation flow in a car cabin were carried out using computational fluid dynamics (CFD) analysis or scale-down water-model experiments. In this study, whole ventilation flow discharged from the air vent of a real passenger car was measured using a special PIV (particle image velocimetry) system for large-size FOV (field of view). Under real recirculation ventilation condition, the spatial distributions of stream-wise turbulence intensity and mean velocity were measured in the vortical panel-duct center plane under the panel ventilation mode. These experimental data would be useful for understanding the detailed flow structure of real ventilation flow and validating numerical predictions.

발전소 스팀제어용 유압서보 액추에이터의 씰 수명 향상에 관한 연구 (A Study on the Seal Life Improvement of the Hydraulic Servo Actuator for Steam Control of Power Plants)

  • 이용범;이종직
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권2호
    • /
    • pp.32-37
    • /
    • 2018
  • The power plants use turbine output control devices to supply or shut off steam to high pressure and low-pressure steam turbines connected to generators. This turbine output control device is driven by a hydraulic servo actuator. The gas flows into the hydraulic servo actuator during periodic inspection or normal operation, and the resulting adiabatic compression of the gas raises the internal temperature of the actuator to $500^{\circ}C$. This temperature increase causes the seals to burn and show wear and tear, resulting in failure. In this study, an air vent valve was installed to allow gas inside the hydraulic servo actuator to flow large quantities of air at the beginning of the operation and after the periodic inspection. Gas was passed through for only minute flow during normal operation of the power plant. By applying the air vent valve, it improves the reliability of the hydraulic servo actuator by discharge the gas appropriately to improve the life of the seal.

토마토재배용 플라스틱온실의 이중피복방법에 따른 광합성유효광량자속 투과 및 열관류 특성 (Characteristics of PPF Transmittance and Heat Flow by Double Covering Methods of Plastic Film in Tomato Greenhouse)

  • 이현우;심상연;김영식
    • 한국농공학회논문집
    • /
    • 제52권5호
    • /
    • pp.11-18
    • /
    • 2010
  • This study was conducted to provide design data for deciding covering method in double layers greenhouse. The variation of photosynthetic photon flux (PPF) and heat flow in air inflated and conventional double layers greenhouse was analyzed. The PPF of air inflated double covering greenhouse was less than that of conventional greenhouse during summer season because the more PPF comes into conventional greenhouse through roof vent which was rolled up for ventilation. The air inflated double layers covering greenhouse was superior to conventional type in the aspect of controlling inside temperature down owing to lower irradiation. The PPF of air inflated greenhouse was greater than that of conventional greenhouse during winter season because the transmittance of conventional greenhouse decreased by dust collected on inside plastic film nearly closed for insulation. Considering the PPF not sufficient for tomato growing in winter, the air inflated double covering system with the greater transmittance was better than conventional covering system. When the inside air of air inflated greenhouse was injected into space between the double layers of covering, the PPF of air inflated greenhouse was much less than the conventional greenhouse because the transmittance of air inflated double covering decreased due to condensation of highly humidified inside air. It was concluded that the more dried outside air should be used for inflating double layers covering. The heat insulation performance of air inflated double covering system was superior to conventional double covering system when comparing the overall heat transfer coefficients for each covering method. However the differences among the overall heat transfer coefficients depending on difference between inside and outside temperatures of greenhouse were great, it is necessary to conduct additional experiment for investigating the overall heat transfer coefficient to design the double layers covering.