• Title/Summary/Keyword: Air Suspension

Search Result 206, Processing Time 0.03 seconds

CFD Analysis for Concept Design of Air Levitation Transport System (공기부양 이송시스템 개념설계를 위한 전산유동해석)

  • Chang H.S.;Park Y.J.;Chang Y.S.;Choi J.B.;Kim Y.J.;Chun P.H.;Kong J.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.81-82
    • /
    • 2006
  • Conveyor-type transporters have been widely used as a typical delivery system of semi-conductor, FPD and other IT-related products. However, as the IT-product is getting larger in size and higher in resolution, several problems are caused by mechanical contacts between the transporter and target object. In this context, recently, lots of efforts are being devoted for development of various contact-free handling systems to get rid of deffets and oil contaminations. The objectives of this paper are to characterize suspension mechanisms and to investigate air flow effects on air levitation transport system. For this purpose, a series of CFD analyses were carried out and the simulation data showed a good agreement with the corresponding experimental ones. It is anticipated that the promising result can be used as a basis for concept design of the transport system.

  • PDF

An advanced study of multi-stage type hydrocyclone dust collector for fish egg collecting using Visualization (가시화기법을 이용한 다단형 하이드로 사이클론 어란 (魚卵) 집진장치의 개선에 관한 연구)

  • CHOI, Eunhee;PYEON, Yongbeom;LEE, Seung-heon;LEE, Kyounghoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.4
    • /
    • pp.404-412
    • /
    • 2017
  • A centrifugal cyclone dust collecting apparatus includes a hydro cyclone dust collecting apparatus for separating solid or liquid using liquid or suspension as a medium. In this study, the formation mechanism and improvement of air core and inner air layer were confirmed through Particle Image Velocimetry. These results showed that the modified experimental model was designed in the conventional method suitable for the separation of juvenile fish and eggs. The inlet speed of the multi-stage hydrocyclone dust collector, which can increase the inlet velocity and minimize floatage in the turbulence chamber, was increased from 0.15 to 0.30 m/s. As a result, the air core was stably formed, the inner air layer was increased with increasing speed. In addition, the dust collecting efficiency of egg and juvenile fish was 97.8% on average, It can infer that this system confirmed the ability to efficiently collect particles of $40{\mu}m$ or more.

IMPROVEMENT OF RIDE AND HANDLING CHARACTERISTICS USING MULTI-OBJECTIVE OPTIMIZATION TECHNIQUES

  • KIM W. Y.;KIM D. K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.141-148
    • /
    • 2005
  • In order to reduce the time and costs of improving the performance of vehicle suspensions, the techniques for optimizing damping and air spring characteristic were proposed. A full vehicle model for a bus is constructed with a car body, front and rear suspension linkages, air springs, dampers, tires, and a steering system. An air spring and a damper are modeled with nonlinear characteristics using experimental data and a curve fitting technique. The objective function for ride quality is WRMS (Weighted RMS) of the power spectral density of the vertical acceleration at the driver's seat, middle seat and rear seat. The objective function for handling performance is the RMS (Root Mean Squares) of the roll angle, roll rate, yaw rate, and lateral acceleration at the center of gravity of a body during a lane change. The design variables are determined by damping coefficients, damping exponents and curve fitting parameters of air spring characteristic curves. The Taguchi method is used in order to investigate sensitivity of design variables. Since ride and handling performances are mutually conflicting characteristics, the validity of the developed optimum design procedure is demonstrated by comparing the trends of ride and handling performance indices with respect to the ratio of weighting factors. The global criterion method is proposed to obtain the solution of multi-objective optimization problem.

Load/unload Dynamics of Slider on Ramp for Various Ramp Shapes (램프 형상에 대한 램프 상의 로드/언로드 동특성 해석)

  • Park, Kyoung-Su;Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil;Lee, Yong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1248-1254
    • /
    • 2005
  • L/UL(Load/unload) mechanism has been widely used in SFF(Small form factor) HDD because L/UL technology has many advantages such as an increase of areal density, reduction of power consumption and improvement of shock resistance. In this system, the most important design goal is no slider-disk contact and fast air-hearing breaking during L/UL process. To do so, we should consider many design parameters related to L/UL system. The ramp shape is the most dominant component among parameters which dramatically affect the L/UL performance. This paper makes an advanced ramp model using ANSYS/LS-DYNA. Through this FE model, this paper investigates the effect of initial ramp slope and location of air-bearing breaking. From the experiment for three different ramps, we also verify that experimental results agree with simulation results. We conclude that the ramp design should have small ramp slope at the moment which a suspension tap contacts with ramp and large ramp slope after air-bearing breaking in order to improve L/UL Performance.

Microparticulation/Air Classification of Rice Bran: Characteristics and Application (초미세분쇄/공기분급을 이용한 탈지미강 분획의 특성과 응용)

  • Park, Dong-June;Ku, Kyung-Hyung;Mok, Chul-Kyoon
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.769-774
    • /
    • 1993
  • Defatted rice bran was microparticulated using fluidized bed opposed jet mill and air-classified at different air classifying wheel speed (ACWS) in Turboplex classifier. The median particle size and the standard deviation decreased, and concomitantly the specific surface area increased generally with increasing ACWS. The protein, fat and ash contents of the recovered rice bran increased with ACWS. The contents of minerals; magnesium, zinc, iron and manganese; increased positively with ACWS. The phytic acid content, however, was slightly higher at middle ACWS. The dietary fiber content was highest in the ACWS 15,000 rpm fraction showing 31.47%. Higher ACWS resulted in lighter colored powder. The water holding capacity (WHC) showed the maximum value at ACWS 12,000 rpm and decreased with increasing ACWS, while the oil holding capacity (OHC) increased with ACWS. The rheological property of the microparticulated rice bran/water suspension fitted to the linear model. The yield stress and viscosity of the suspension increased with ACWS. The shape of microparticulated rice bran at ACWS 21,000 rpm was spherical, and the median particle size was $3.7{\mu}m$. When cake was prepared with substitution of microparticulated rice bran at 5%, the cake height and volume increased remarkably.

  • PDF

The Characteristics of Water Based Ferrofluid of Magnetite Prepared by Air Oxidation (공기산화법으로 제조한 Magnetite의 물분산매 자성 유체의 특성)

  • 신학기;장현명;한창덕;김태옥
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.1
    • /
    • pp.109-117
    • /
    • 1990
  • Magnetite for Water-based ferrofluid was synthesized by air oxidation of aqueous suspension in the pH range 7-12 at $65^{\circ}C$. The optimum condition of magneite formation was delineated by examining various physicochemcial properties such as Fe2+ content, phase characteristics, MHC and $\sigma$max. The point of zero charge of iron oxide powders obtained at various pH conditions were correlated with the oxidation state of Fe in the iron oxide. The magnetite powder prepared at pH 9 ws dispersed using sodium oleate and sodium dodecylbenzenesulfonate (SDBS) as dispersants, and the dispersion characteristics of the magnetite ferrofluid were examined by means of the fraction of solid dispersed, zeta potential data and FT-IR spectrum. A simple calculation on the potential energy of two interacting magnetite particles showed that the dispersion stability was directly correlated with height of the potential energy barrier or the shape of zeta potential.

  • PDF

Experiments on the Influence of the Air Cavity Resonance on the Structural Vibration Modes in Radial Tire (승용차용 레이디얼 타이어에서 공기공동진동형이 구조진동형에 미치는 영향에 관한 실험)

  • Kim, Yong-Woo;Jeong, Kyoung-Shin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.44-49
    • /
    • 2007
  • It is well known that the acoustic cavity inside the tire-wheel assembly contributes to vehicle interior noise. In this paper, we have performed acoustic and structural modal testings to investigate the influences of the acoustic cavity resonance on structural vibration characteristics for the tire in free-suspension and for the loaded tire. The testings have given us some findings, which are reported in this paper.

Dynamic Analysis of Magnetically Levitation System Propelled by Linear Synchronous Motor (선형동기전동기 추진 자기부상시스템 동특성 해석)

  • Kim, Ki-Jung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1820-1826
    • /
    • 2016
  • This paper deals with dynamic characteristics of the experimental magnetic levitation vehicle employing LSM(Linear Synchronous Motor) for propulsion. To predict the dynamic characteristics of the system, the dynamic model which is composed of the electrical elements such as electromagnets and LSM and mechanical components and is developed based on multibody dynamics is developed. The resulting system equations of motion for the model are a coupled one representing all the mechanical and electrical parts. To verify the dynamic model of the system, air gaps are measured in both running tests and simulation, and the frequency characteristics of air gaps are analyzed. From the results, it can be seen that the frequency responses are almost the same. Finally, to evaluate the levitation stability and the designed controller, numerical simulations are carried out.

Improvement of Bifidobacterium longum Stability Using Cell-Entrapment Technique

  • Woo, Chang-Jae;Lee, Ki-Yong;Heo, Tae-Ryeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.2
    • /
    • pp.132-139
    • /
    • 1999
  • A cell-entrapment technique using compressed air was applied to Bifidobacterium longum KCTC 3128 for the improvement of bifidobacteria viability. The main cell-entrapment matrix used was alginate, and viability improvement of the B. longum entrapped in alginate lattices was monitored along with the effects of other additional biopolymers. A prerequisite for acquiring consistent results was the uniformity of bead size and cell distribution which was achieved by using compressed air and mixing the cell suspension with sterilized alginate powder, respectively. The viability losses of the B. longum entrapped in alginate beads in the presence of three different substances logarithmically increased in relation to the reaction time, and proportionately decreased with an increased alginate concentration and bead diameter. The strongest improvement in B. longum viability was exhibited with a bead containing 3% alginate and 0.15% xanthan gum.

  • PDF

An Experimental Study on the Optimum water-cement ratio of Antiwashout underwater concrete (수중불분리콘크리트의 최적 W/C에 관한 연구)

  • 윤재범;어영선;김종수;김명식;백동일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.277-283
    • /
    • 1998
  • In this study we changed W/C into 45, 50, 55, 60%, mixed sea sand which is often used as a replacing aggregate according to the lack of recourse with river sand in the ratio of 5:5 and producted antiwashout underwater concrete. We measured slump flow, air value, pH and suspension in the fresh concrete. After testing each W/C through unit weight and compressive strength of specimen which is produced and cured in the air and salt water it was founded that if sea sand was properly used after salt manufacturing, there will be no bad influence to antiwashout underwater concrete. The characteristic of them showed excellent, when W/C was 50%.

  • PDF