• Title/Summary/Keyword: Air Quality Monitoring Stations

Search Result 92, Processing Time 0.027 seconds

Investigation on the Validation for Designating Air Quality Control Region among Provincial Cities by the Data Measured with Air Quality Monitoring Network (대기오염 측정 자료에 의한 지방도시의 대기환경규제지역 설정에 관한 타당성 검토)

  • Yu, Mee-Seon;Yang, Sung-Bong;Woo, Kyung-Bin
    • Journal of Environmental Science International
    • /
    • v.25 no.1
    • /
    • pp.181-190
    • /
    • 2016
  • Regional air quality regulation is a system that allows the Minister of Environment to designate the local area as air quality control region where the concentrations of air pollutants are exceeding the environmental standards, and the local governments that administrate the regulated area have to develop and practise a plan for reducing the air pollutants. From the data observed yearly by the monitoring stations in 8 provincial cities with more than 0.5 million people was judged the compliance with air quality standards in each municipality for the period of 2003 to 2013. As the result of investigation on air pollutants concentrations of each city, it was found that there was no station that exceeds the ambient air quality standards of CO, $SO_2$ and 24-hour $NO_2$. But all municipalities exceeded the standards of 8-hour $O_3$, annual and 24-hour $PM_{10}$, and therefore 8 municipalities can be designated to be under the local air regulation. For the annual $NO_2$ were the monitoring sites necessary requirements for designation of the air quality regulation region in Cheongju, Cheonan, Daejeon and Gwangju area. Incase of 1-hour $O_3$, some of stations in Pohang, Cheongju, Cheonan and Changwon area were over the designation standards for the air quality control region.

Web Information Systems for Safety and Health Monitoring in Subway Stations

  • Choi, Gi-Heung
    • International Journal of Safety
    • /
    • v.8 no.1
    • /
    • pp.10-13
    • /
    • 2009
  • In this study, a framework for web-based information system in VDN environment for safety and health monitoring in subway stations is suggested. Since physical variables that describing safety and health need to be closely monitored in multiple locations in subway stations, concept of distributed monitoring network using wireless media needs to be implemented. Connecting remote wireless sensor network and device (LonWorks) networks to the IP network based on the concept of VDN can provide a powerful, integrated and distributed monitoring performance, making a web-based information system possible.

Problems and Improvements in the Quality Control of the Air Monitoring Network (대기오염측정망 정도관리의 문제점과 개선방향)

  • Kim, Duck-Sung;Park, Jeong-Ho
    • Journal of Environmental Science International
    • /
    • v.29 no.8
    • /
    • pp.847-855
    • /
    • 2020
  • This study presented problems and improvements in the quality control of an air monitoring network, using Gyeongnam as an example. 1) The effective utilization rate of the air monitoring was 95%, which showed good management, but the maximum of 2% was indicated by zero or detection limit among measurement data. 2) In the equivalence evaluation of PM2.5, the slope and intercept satisfy the evaluation criteria; however, 1% of the PM2.5/PM10 ratios were outliers. 3) All air monitoring stations meet the quality control standards; however, the management status is added to the quality inspection, management system is unified and the related budget is expanded, and systematic commission management is required.

Performance Evaluation of Wireless and Wired Networks for Monitoring and Control of Indoor Air Quality(IAQ) in Subway Stations (지하철역사의 공기질 감시 및 제어를 위한 유무선 네트워크의 성능평가에 관한 연구)

  • Choi, Gi-Heung
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • In crowded subway stations indoor air quality (IAQ) is a key factor for ensuring the safety and health of passengers. Since physical variables that describing IAQ such as the concentration of particulate, $CO_2$, VOCs and biological agents need to be closely monitored and controlled in multiple locations within subway stations and in remote sites, concept of web-based monitoring and control network using both wireless and wired media needs to be implemented. Connecting remote wireless sensor network and device (LonWorks) networks to the IP network based on the concept of VDN can provide a powerful, integrated, distributed monitoring and control performance. In this study, performance of wireless and wired network in VDN for monitoring and control of IAQ in subway stations is evaluated. Specifically, delay induced in wireless and wired networks, and data transmission rate are evaluated. A key parameter is identified in assuring safety and health of passengers in subway stations.

On the Characteristics of the SO$_2$ Concentration Variation in Pusan, Korea (부산 지역의 SO$_2$ 농도 변화 특성에 관한 고찰)

  • 전병일;김유근;이화운
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.4
    • /
    • pp.245-251
    • /
    • 1994
  • We considered that characteristics of SO$_2$, concentration level and relations of the meteorological parameters and high pollution concentration from the data measured 7 air quality continuous monitoring stations during 4 years, from 1990 to 1993 in Pusan. The SO$_2$ concentration level showed decreasing trend yearly, it was maximum in Winter, minimum in Summer. The time of SO$_2$ peak concentration lagged from seashore to land because of break-down of the nocturnal inversion layer and seabreeze. Ihe correlations of daily SO$_2$, value between various air quality continuous monitoring stations were highest between Beomcheondong and Meongryundong, lowest between Daeyeondong and Sinpyeongdong because of difference of air Pollution emission sources characteristic. The meteorological parameters affecting SO$_2$ concentration level were minimum temperature, relative humidity, wind speed and air pressure. The SO$_2$ high pollution($\geq$95ppb) occurred almost in Winter, particulaly in such day showing lower wind speed and higher air pressure. Elementary SO$_2$ high Pollution Predictor were high pressure system and stability of lower atmosphere.

  • PDF

A Simulation of High Ozone Episode in Downwind Area of Seoul Metropolitan Using CMAQ Model (CMAQ을 이용한 수도권 풍하지역의 고농도 오존 현상 모사)

  • Lee, Chong Bum;Song, Eun Young
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.3
    • /
    • pp.193-206
    • /
    • 2006
  • Recently, high ozone episode occurred frequently in Korea. Moreover ozone episode occurred not only in the city but also in background area where local anthropogenic sources are not important. It analyzed frequency exceeding 100ppb ozone at air quality monitoring stations in Seoul and rural area during 1995-2004. This paper reports on the use of the Community Multiscale Air Quality (CMAQ) modelling system to predict hourly ozone levels. Domain resolutions of 30km, 10km, 3.333km (innermost) have been employed for this study. Summer periods in June 2004 have been simulated and the predicted results have been compared to data for metropolitan and rural air quality monitoring stations. The model performance has been evaluated with measured data through a range of statistical measures. Although, the CMAQ model reproduces the ozone temporal spatial trends it was not able to simulate the peak magnitudes consistently.

A Commentary on Air Pollution Monitoring Programs in Korea

  • Ghim, Young-Sung;Kim, Jin-Young;Shim, Shang-Gyoo;Moon, Kill-Choo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E1
    • /
    • pp.21-28
    • /
    • 2002
  • Air quality issues in Korea rapidly changed at the beginning of the 1990s from primary to secondary pollutants starting in Seoul, the capital of Korea. The present frame of national air pollution monitoring networks was established between the end of the 1980s and the beginning of the 1990s. Background monitoring was initiated in the middle of the 1990s in response to increasing public concern about the long-range transport of air pollutants. Apart from the national monitoring, both routine and intensive measurements of fine particles have been made for research purposes since the middle of the 1990s at several background sites. However, air pollution monitoring in urban areas for other purposes was relatively scarce as national monitoring has been concentrated in these areas. Although ozone pollution has become a significant issue in major metropolitan areas every summer, only a little information on ozone precursors is available. During the past few years, the number of national monitoring stations has greatly increased. The government has a plan to gradually expand monitoring items as well as stations. It is anticipated that highly detailed information on both photochemical reactants and products will be available within the next several years. More emphasis will be placed on toxic substances based on risk assessment in monitoring for both research and policy making.

Difference in Chemical Composition of PM2.5 and Investigation of its Causing Factors between 2013 and 2015 in Air Pollution Intensive Monitoring Stations (대기오염집중측정소별 2013~2015년 사이의 PM2.5 화학적 특성 차이 및 유발인자 조사)

  • Yu, Geun Hye;Park, Seung Shik;Ghim, Young Sung;Shin, Hye Jung;Lim, Cheol Soo;Ban, Soo Jin;Yu, Jeong Ah;Kang, Hyun Jung;Seo, Young Kyo;Kang, Kyeong Sik;Jo, Mi Ra;Jung, Sun A;Lee, Min Hee;Hwang, Tae Kyung;Kang, Byung Chul;Kim, Hyo Sun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.16-37
    • /
    • 2018
  • In this study, difference in chemical composition of $PM_{2.5}$ observed between the year 2013 and 2015 at six air quality intensive monitoring stations (Bangryenogdo (BR), Seoul (SL), Daejeon (DJ), Gwangju (GJ), Ulsan (US), and Jeju (JJ)) was investigated and the possible factors causing their difference were also discussed. $PM_{2.5}$, organic and elemental carbon (OC and EC), and water-soluble ionic species concentrations were observed on a hourly basis in the six stations. The difference in chemical composition by regions was examined based on emissions of gaseous criteria pollutants (CO, $SO_2$, and $NO_2$), meteorological parameters (wind speed, temperature, and relative humidity), and origins and transport pathways of air masses. For the years 2013 and 2014, annual average $PM_{2.5}$ was in the order of SL ($${\sim_=}DJ$$)>GJ>BR>US>JJ, but the highest concentration in 2015 was found at DJ, following by GJ ($${\sim_=}SJ$$)>BR>US>JJ. Similar patterns were found in $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$. Lower $PM_{2.5}$ at SL than at DJ and GJ was resulted from low concentrations of secondary ionic species. Annual average concentrations of OC and EC by regions had no big difference among the years, but their patterns were distinct from the $PM_{2.5}$, $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$ concentrations by regions. 4-day air mass backward trajectory calculations indicated that in the event of daily average $PM_{2.5}$ exceeding the monthly average values, >70% of the air masses reaching the all stations were coming from northeastern Chinese polluted regions, indicating the long-range transportation (LTP) was an important contributor to $PM_{2.5}$ and its chemical composition at the stations. Lower concentrations of secondary ionic species and $PM_{2.5}$ at SL in 2015 than those at DJ and GJ sites were due to the decrease in impact by LTP from polluted Chinese regions, rather than the difference in local emissions of criteria gas pollutants ($SO_2$, $NO_2$, and $NH_3$) among the SL, DJ, and GJ sites. The difference in annual average $SO{_4}^{2-}$ by regions was resulted from combination of the difference in local $SO_2$ emissions and chemical conversion of $SO_2$ to $SO{_4}^{2-}$, and LTP from China. However, the $SO{_4}^{2-}$ at the sites were more influenced by LTP than the formation by chemical transformation of locally emitted $SO_2$. The $NO_3{^-}$ increase was closely associated with the increase in local emissions of nitrogen oxides at four urban sites except for the BR and JJ, as well as the LTP with a small contribution. Among the meterological parameters (wind speed, temperature, and relative humidity), the ambient temperature was most important factor to control the variation of $PM_{2.5}$ and its major chemical components concentrations. In other words, as the average temperature increases, the $PM_{2.5}$, OC, EC, and $NO_3{^-}$ concentrations showed a decreasing tendency, especially with a prominent feature in $NO_3{^-}$. Results from a case study that examined the $PM_{2.5}$ and its major chemical data observed between February 19 and March 2, 2014 at the all stations suggest that ambient $SO{_4}^{2-}$ and $NO_3{^-}$ concentrations are not necessarily proportional to the concentrations of their precursor emissions because the rates at which they form and their gas/particle partitioning may be controlled by factors (e.g., long range transportation) other than the concentration of the precursor gases.

Air Quality Monitoring System Using NDIR-CO$_2$ Sensor for Underground Space based on Wireless Sensor Network (비분산적의선 CO$_2$센서를 이용한 무선 센서 네트워크 기반의 지하 공기질 모니터링 시스템)

  • Kwon, Jong-Won;Kim, Jo-Chun;Kim, Gyu-Sik;Kim, Hie-Sik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.4
    • /
    • pp.28-38
    • /
    • 2009
  • In this study, a remote air quality monitoring system for underground spaces was developed by using NDIR-based CO$_2$ sensor. And the remote monitoring system based on wireless sensor networks was installed practically on the subway station platform. More than 6.5 million citizens commutate everyday by the Seoul subway transportation that is the most typical public transportation. They concern about air quality with increasing interest on public health or many workers in subway stations or underground shopping centers. Recently, the Korean Ministry of Environment has operated the air quality monitoring system in some subway stations for testing phase. However, it showed many defects which are large-scale, high-cost and maintenance of precision sensors imported from abroad. Therefore this research includes the reliability test and a theoretical study about the inexpensive commercialized CO$_2$ sensor for reliable measurement of air quality which changes rapidly by the surrounding environments. And then we develop the wireless sensor nodes and the gateway applied for remote air quality monitoring. In addition, web server program was realized to manage air quality in the subway platform. This result will be valuable for a basic research for air quality management in underground spaces for future study.

Statistical Analysis for Ozone Long-term Trend Stations in Seoul, Korea (통계적 기법을 적용한 서울의 오존 장기변동 대표측정소 선정)

  • Shin, Hyejung;Park, Jihoon;Son, Jungseok;Rho, Soona;Hong, Youdeong
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.2
    • /
    • pp.111-118
    • /
    • 2015
  • This study was conducted for the establishment of statistical method to determine the representative air quality monitoring station representing long-term ozone trends of Seoul. In this study, hourly ozone concentrations from 2002 to 2011 were used for further analysis. KZ-filter, correlation matrix, cluster analysis, and Kriging method were applied to select the representative station. The analysis based on correlation matrix found that long-term trend of ozone concentrations measured at Sinjung, Sadang, and Bun-dong showed a high correlation. The cluster analysis found that the former three stations belonged to the same cluster. The analysis based on Kriging method also showed that the former three stations were highly correlated with other stations in spatial distribution. Considering these results and the highest correlation coefficient of Sinjung station, the Sinjung station was the most suitable as the representative station used to understand the long-term ozone trend of Seoul. This result could be applied to understand long-term trend of other pollutants. Furthermore, this result can also be used to assess the appropriacy of spatial distribution of national air quality monitoring stations.