• Title/Summary/Keyword: Air Particles

Search Result 1,523, Processing Time 0.029 seconds

Computational visualization for condensational growth of micro-particles in the pipe flow through a porous material (다공성 물질을 통과하는 관내 유동에서의 미세 입자 응축성장 전산 가시화)

  • Moon, Jihoo;Kim, Daegyoum
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.63-69
    • /
    • 2022
  • In this study, we numerically simulate the condensational growth of micron-sized particles traveling through a pipe filled with humidified air. Using the finite volume method and Lagrangian particle tracking technique, the mixture of particle-laden flow with moist air in a T-juction pipe is simulated. The condensational growth of particles is calculated by considering the mass transfer of vapor in the air onto the particle surface. The results indicate that the growth rate of the particles increases as the relative humidity of air is higher. Furthermore, the placement of a porous media with low permeability in the pipe could enhance the degree of condensational growth.

Synthesis of Oxidation Resistant Core-shell Nanoscale Zero-valent Iron by Controlled Air Contact (공기접촉 제어를 통한 산화방지 Core-Shell 나노영가철의 제조)

  • Ahn, Jun-Young;Kim, Hong-Seok;Hwang, In-Seong
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.93-102
    • /
    • 2008
  • Experimental studies were conducted to characterize the synthesized nanoscale zero-valent iron (NZVI) which is resistant to oxidation in the atmospheric environment. XRD, XPS, and TEM analyses revealed that the oxidation-resistant NZVI particles formed under various controlled air contact conditions (4, 8 and 12 mL/min) have shells with ${\sim}$5 nm thickness. The shells consist of magnetite (${Fe_3}{O_4}$) and maghemite (${\gamma}-{Fe_2}{O_3}$), predominantly. No substantial differences were found in the shell components and thickness among NZVI particles formed under the various air flow rates. On the other hand, shell was not detected in the TEM image of rapidly oxidized NZVI particles. NZVI particles synthesized under the various air flow rates showed similar TCE degradation performances ($k_{obs}$= 0.111, 0.102, and 0.086 $hr^{-1}$), which are equivalent to approximately 80% of those obtained by the fresh NZVI particles. TCE degradation efficiencies of the NZVI particles(fresh, controlled air contact and rapidly oxidized) were improved after equilibrating with water for one day, indicating that depassivation of the shells occurred. The performances of NZVI particles decreased to 90% and 50% of those of the fresh NZVI particles, when they were equilibrated with the atmosphere for a week and two months, respectively. The NZVI particles synthesized under the controlled air contact would have advantages over traditional NZVI particles in terms of practical application into the site, because of their inertness toward atmospheric oxygen.

Energy Storage Characteristics In Fixed Beds (Charging, Storing, Discharging)

  • Hassanein, Soubhi A.;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.17-23
    • /
    • 2004
  • In the present work, the numerical model was refined to predict the thermal analysis of energy storage in a fixed beds during (charging ,storing, discharging) mode. The governing energy equations of both fluid and the solid particles along with their initial and boundary conditions are derived using a two-phase, one dimensional model. The refined model is carried out by taking into account change of (air density , air specific heat) with air temperature and also by taking into considerations heat losses from bed to surrounding. Finite difference method was used to obtain solution of two governing energy equations of both fluid and solid particles through a computer program especially constructed for this purpose. The temperature field for the air and the solid are obtained, also efficiency of energy stored inside the bed is computed. Finally using refined model the effect of air flow rate per unit area Ga (0.2, 0.3, and 0.4 kg/$m^2$-s), and inlet air temperature (200, 250, 300 $^{\circ}C$) on energy storage characteristics was studied in three mode ( charging ,storing, discharging). The rock particles of diameter 1 em is used as bed material in this research.

  • PDF

Preprocessing Miscanthus sacchariflorus with Combination System of Cone Grinder and Air Classifier

  • LEE, Hyoung-Woo;EOM, Chang-Deuk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.328-335
    • /
    • 2021
  • Considerable differences exist in the characteristics of size reduction and classification because of biomass species. Miscanthus sacchariflorus (M. sacchariflorus) Goedae-Uksae 1 is not used efficiently because of the imperfections of the processing technology for this biomass. Therefore, for the best use of specific biomass, improvement in the feedstock preparation of the biomass for processing, such as pellet manufacturing, is necessary. In this study, a laboratory-scale cone grinder and air classifier were designed and combined to investigate the performance of the combination system for M. sacchariflorus. The average equivalent spherical diameter of particles showed a close relationship with air velocity for air classification. The air velocity range to classify proper particles for pelletization was determined to be 6.0-6.8 m/s. The mass ratios of the collected particles to feed mass for four lengths of chopped M. sacchariflorus were 45.1%:46.1%, 39.1%:46.6%, and 44.1%:52.8% at the first, second, and third steps in simulating the multistep combination system, respectively.

Metal Effects of Urban Air Particulates on Cytokine Production and DNA Damage

  • Lee, Kwan-Hee;Hong, Yun-Chul
    • Toxicological Research
    • /
    • v.17 no.4
    • /
    • pp.255-265
    • /
    • 2001
  • Epidemiologic studies have demonstrated an association between short-term exposure to particulate air pollutants and increased mortality. However the biological mechanism underlying these associations have not been fully established and also the chemical and physical characteristics of the pollutant particles are not well understood. The metal constituents of air pollutant particles and their bioavailability are considered to Play an important role as possible mediators of Particle-induced airway injury and inflammation. Sprague-Dawley rat alveolar macrophage cells (NR8383) were exposed to airborne and acid-leached particulate matter (PM). Titanium oxide and nickel subsulfide were used as negative and positive controls. Particle-induced reactive oxygen species formation in cells was detected using the fluorescent probe 2',7'-dichlorofluorescin diacetate. Expression of TNF-$\alpha$ and IL-6 were measured by enzyme-linked immunosorbent assay, and PM-induced DNA double-strand breaks were determined with $\lambda$DNA/Hind III marker. Metals associated with air pollutant particles mediated intracellular oxidant production in alveolar macrophages, and the cytotoxicity and proinflammatory cytokine production induced by PM were associated with oxidative stress. The oxidants produced by air pollutant particles also are likely to induce DNA double-strand breaks. Our findings in alveolar macrophage cells exposed to PM and acid-leached PM support the hypothesis that metal components in urban air pollutants and their bioavailabilities might play an Important role in the induction of the adverse health effects.

  • PDF

Effects of Air Pressure on the Fabrication of Nano-Sized Tin Oxide Powder by Spray Pyrolysis Process (분무열분해 공정에 의한 주석산화물 나노분체 제조에 미치공기압력의 영향)

  • Yu, Jae-Keun;Kim, Dong-Hee
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.690-696
    • /
    • 2011
  • In this study, nano-sized tin oxide powder with an average particle size of below 50 nm is prepared by the spray pyrolysis process. The influence of air pressure on the properties of the generated powder is examined. Along with the rise of air pressure from $0.1kg/cm^2$ to $3kg/cm^2$, the average size of the droplet-shaped particles decreases, while the particle size distribution becomes more regular. When the air pressure increases from $0.1kg/cm^2$ to $1kg/cm^2$, the average size of the dropletshaped particles, which is around 30-50 nm, shows hardly any change. When the air pressure increases up to $3kg/cm^2$, the average size of the droplet-shaped particles decreases to 30 nm. For the independent generated particles, when the air pressure is at $0.1kg/cm^2$, the average particle size is approximately 100 nm; when the air pressure increases up to $0.5kg/m^2$, the average particle size becomes more than 100 nm, and the surface structure becomes more compact; when the air pressure increases up to $1kg/cm^2$, the surface structure is almost the same as in the case of $0.5kg/cm^2$, and the average particle size is around 80- 100 nm; when the air pressure increases up to $3kg/cm^2$, the surface structure becomes incompact compared to the cases of other air pressures, and the average particle size is around 80-100 nm. Along with the rise of air pressure from $0.1kg/cm^2$ to $0.5kg/cm^2$, the XRD peak intensity slightly decreases, and the specific surface area increases. When the air pressure increases up to $1kg/cm^2$ and $3kg/cm^2$, the XRD peak intensity increases, while the specific surface area also increases.

An Experiment on the Particle Collection Characteristics in a Packed Wet Scrubber (충진층식 세정집진기의 집진특성 실험)

  • 유경훈;노희환;최은수;김종균
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.4
    • /
    • pp.305-311
    • /
    • 2003
  • DOP aerosol particles with geometric mean diameter of 0.5-3.0 ${\mu}{\textrm}{m}$, geometric standard deviation of 1.1-1.3 and total number concentration of 1,500-8,000 Particles/㎤ were used to determine collection efficiencies of a packed wet scrubber with respect to particle size. The tested operating variables included air velocity and water injection rate. It was shown from the experimental results that the collection efficiencies increased with increasing water injection rate and decreasing air velocity. Meanwhile, as for the particle size variation, all of the collection efficiency curves increased rapidly between 0.57-1.41${\mu}{\textrm}{m}$ for the range of water injection rate above 30 L/min. It was also seen that the collection efficiency of a packed wet scrubber is mainly governed by the mechanism of inertial impaction.

Surface Discharge Characteristics in Dry-Air on Laminated Epoxy Solid Dielectrics and Conductive Particle (적층된 에폭시 고체유전체와 도전성 파티클에 대한 Dry-Air의 연면방전특성)

  • Lim, Dong-Young;Jeon, Jong-Cheul;Bae, Sungwoo;Lee, Kwang-Sik;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.93-101
    • /
    • 2016
  • This paper presents the surface discharge characteristics in Dry-Air on laminated epoxy solid dielectrics and conductive particles in order to provide the valuable information for the insulation design of eco- friendly gas insulated switchgear. To improve insulation performance, the three types of the laminated epoxy solid dielectrics were proposed, and it was revealed that their surface discharge characteristics were similar to the bakelite dielectrics of same-laminated types. From the surface discharge characteristics of dry air, it was demonstrated that the effect of conductive particles on surface discharge voltage was dominant when there are this particles at the shortest electrode gap and that the degradation of insulation performance on the conductive particles was evident in epoxy than teflon. These phenomena were interpreted in terms of particle-triggered discharge mechanism and electric field of triple junction, respectively.

Characteristics of $PM_{2.5}$ Particles Measured in the Background Sites of Korea (우리나라 청정 지역에서 측정한 $PM_{2.5}$ 입자의 특성)

  • 이종훈;김용표;문길주;김희강;정용승;이종범
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.6
    • /
    • pp.439-450
    • /
    • 1997
  • Atmospheric fine particles $(PM_{2.5})$ were collected at the background sites, Kangwha, Taean, and Kosan and characterized to understand their behaviors at the sites. Daily samples of $PM_{2.5}$ mass were measured and ionic species, carbonaceous species, and gaseous species were analyzed. Four-day backward trajectory analysis was also carried out. The mean concentrations of anthropogenic species were highest at Kangwha among three sites, while contributions from sea salts wree highest at Taean during the measurement period due to higher wind speed at Taean. Major chemical components in fine particles were sulfate, organic carbon, nitrate, and ammoniu. Most of the non-sea-salt (nss) sulfates in $PM_{2.5}$ might be present as ammonium sulfates at these sites. Most air parcels arriving at Kangwha and Taean were from northern China. Therefore, both sites were thought to be affected by the same air parcel. At Kosan, during the measurement period, air parcels were from either northern China or sourthern China. The nss sulfate concentration in the air parcels from southern China was higher, while the nss calcium, nitrate, and ammonium concentrations were higher when the air parcels were from northern China.

  • PDF

A Numerical Analysis of Turbulent Flow Field and Contamination Particles Movements in Rectangular Chambers (장방형 공간내 난류유동및 오염물질 거동의 수치해석)

  • Shim, W.S.;Song, K.C.;Hwang, T.Y.;Shin, Y.C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.5
    • /
    • pp.350-364
    • /
    • 1991
  • The movements of small particles distributed uniformly in a steady flow in rectangular chambers having inlets and outlets were simulated numerically. Low Reynolds number turbulent model with a two-equation ($k-{\varepsilon}$) which describes the turbulent characteristics was applied to predict the air flow pattern and particles movements under the condition of the various locations and size of ducts. The calculation results show that the prediction of recirculation zone and stagnation point of flow is important to determine the particles behavior according to the design change. These results will be useful in designing the rectangular chambers for collective protection.

  • PDF