• 제목/요약/키워드: Air Nozzle Position

검색결과 50건 처리시간 0.024초

디퓨저/노즐을 이용한 압전형 마이크로 펌프의 펌핑 특성에 미치는 입출구 위치의 영향 (Effect of Inlet and Outlet Position on the Pumping Characteristics of a Diffuser/Nozzle Based Piezoelectric Micropumps)

  • 장훈희;김창녕;정진
    • 설비공학논문집
    • /
    • 제19권5호
    • /
    • pp.411-417
    • /
    • 2007
  • This study has been conducted to investigate pumping characteristics of diffuser/nozzle based piezoelectric micropumps. The micropumps include a piezo disk (an actuator), a chamber and a set of diffuser and nozzle. Flow in the current micropumps is controlled by a set of diffuser and nozzle, not by a nap valve. The diffuser/nozzle based micropumps are more reliable in operation and are easier in manufacturing than the flap valve based micropumps. The flow rates of the piezoelectric micropumps have been closely analyzed with a numerical calculation. It has been found that the positions of the inlet and outlet of the micropump can influence the performance of the diffuser/nozzle based piezoelectric micropumps. This study may provide fundamental understanding for the design and analysis of the piezoelectric micropumps.

고압 급수가열기 추기노즐 설계변경에 따른 감육 범위 연구 (A Study on the Wall Thinning Range according to modified Extraction Nozzle Design in High Pressure Feedwater Heater)

  • 박상훈;유일곤;김경훈;황경모
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.847-852
    • /
    • 2009
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damange, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle inside feed-water heater installed downstream of the turbine extraction stream line. At that point, the extract steam from the turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows to reverse direction after impinging the impingement baffle, the shell wall of feedwater heaters may be affected by flow-accelerated corrosion. In this paper, to compare wall thinning range according to change entrance nozzle diameter and position with reference numerical analysis model's wall thinning range, various numerical analysis models applied. In case of changing diameter, four different diameter is applied. And a side of nozzle position, two different position-vertical type and parallel type-is applied. And then this paper describes operation of numerical analysis which is composed similar condition with real feed water heater. In conclusion, this study shows effective design for shall wall thinning by changing nozzle diameter and position.

  • PDF

Evaluation of a Wafer Transportation Speed for Propulsion Nozzle Array on Air Levitation System

  • Moon, In-Ho;Hwang, Young-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • 제20권9호
    • /
    • pp.1492-1501
    • /
    • 2006
  • A transportation system of single wafer has been developed to be applied to semiconductor manufacturing process of the next generation. In this study, the experimental apparatus consists of two kinds of track, one is for propelling a wafer, so called control track, the other is for generating an air film to transfer a wafer, so called transfer track. The wafer transportation speed has been evaluated by the numerical and the experimental methods for three types of nozzle position a..ay (i.e., the front-, face- and rear-array) in an air levitation system. Test facility for 300mm wafer has been equipped with two control tracks and one transfer track of 1500mm length from the starting point to the stopping point. From the present results, it is found that the experimental values of the wafer transportation speed are well in agreement with the computed ones. Namely, the computed values of the maximum wafer transportation speed $V_{max}$ are slightly higher than the experimental ones by about $15{\times}20%$. The disparities in $V_{max}$ between the numerical and the experimental results become smaller as the air velocity increases. Also, at the same air flow rate, the order of wafer transportation speeds is : $V_{max}$ for the front-array > $V_{max}$ for the face-array > $V_{max}$ for the rear-array. However, the face-array is rather more stable than any other type of nozzle array to ensure safe transportation of a wafer.

선회익위치(旋回翼位置)에 따른 선회화염(旋回火焰)에 관한 연구(硏究) (A Study on the Swirl Flame according to the Swirler Position)

  • 정성찬;채재우
    • 설비공학논문집
    • /
    • 제1권2호
    • /
    • pp.107-115
    • /
    • 1989
  • The swirl flame was investigated experimentally by measuring the temperature distribution, and the combustion gas concentrations. The flame structure of the swirl flame was influenced not by the swirl vane angle but by the swirler position. Due to the momentum loss as the swirler position was moved downward under the nozzle exit, the flame length was increased. Meanwhile the temperature and $CO_2$-concentrations were decreased.

  • PDF

이유체노즐의 액체이송공기 공급방법에 따른 어뎁터 내부유동특성에 관한 해석적 연구 (Effects of Carrier Air Supplying Parameter on the Internal Flow Characteristics of an Adaptor in Two-Fluid Nozzle)

  • 박설혜;조민호;김덕진;이지근;노병준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.65-70
    • /
    • 2008
  • The numerical simulation on the internal flow characteristics of the adaptor in a two-fluid nozzle has been performed to investigate the effects of carrier air supplying parameters using a commercial code. The four adaptor models with the different positions in the carrier air supplying port were considered at the fixed conditions of urea-water solution and carrier air supplying. As the results from the numerical analysis, the internal pressure of the adaptor was varied with the port position for carrier air supplying, and it shows lower pressure value than the atmospheric pressure. Consequently, the flowrate of urea-water solution issuing from the feeding injector with the adaptor varied up to 30% with the port positions for the carrier air supplying. When the carrier air is supplied from the side from the feeding injector axis and the upper part from the feeding injector tip, the flowrate of urea-water solution issuing from the feeding injector with the adaptor show higher value than other carrier air supplying conditions.

  • PDF

MILD 이용한 배기가스 재순환에 관한 연구 (A study on the exhaust gas recirculation in a MILD combustion furnace by using a Venturi nozzle)

  • 하지수;심성훈
    • 에너지공학
    • /
    • 제22권4호
    • /
    • pp.413-419
    • /
    • 2013
  • 본 연구에서는 동심원관 형태의 MILD 연소로에서 바깥 원통의 배기가스 통로에서부터 안쪽 원통의 연소통로 사이에 연결관을 설치하고 배기가스를 유입하기 위해 벤츄리 노즐을 사용할 경우 벤츄리 노즐의 기하학적 형상 변화와 고압공기 노즐의 유속 변화에 따라 고압공기 유량, 배기가스 유입량 특성을 수치해석을 통해 살펴봄으로써 최적의 벤츄리 노즐 형상과 고압공기 유속 조건들을 도출하는 것을 본 연구의 목적으로 하였다. 본 연구의 전산 해석을 통해 고압공기 노즐 출구가 연소로 벽면에 부착된 경우와 배기가스에 노출된 경우를 비교하였고, 이 두 가지 형상에 대하여 고압공기 노즐과 벤츄리 노즐의 간격을 고압공기 노즐 직경의 1배에서 3배로 변화할 때의 유입량 특성을 살펴보았다. 또한 고압공기 노즐에서의 출구 유속을 변화하여 유입량 특성을 살펴보았다. 이를 통해 고압공기 노즐과 벤츄리 노즐의 간격이 증가하면 고압공기 노즐이 벽면에 부착된 경우는 유입량이 상대적으로 변화가 적으나 배기가스에 노출된 경우는 유입량이 증가하는 경향을 확인하였다. 또한 고압공기 노즐의 유속이 증가하면 속도가 낮은 범위에서는 유입량비가 상대적으로 증가하는 경향이 크지만 속도가 큰 영역에서는 증가하는 경향이 줄어드는 것을 확인하였다.

아연도금 부스 환기시스템 개선에 관한 수치해석 (Numerical Analysis on the Improvement of Zinc Plating Booth Ventilation System)

  • 진도훈
    • 한국산업융합학회 논문집
    • /
    • 제24권1호
    • /
    • pp.45-51
    • /
    • 2021
  • The purpose of this study is to suggest the optimal shape for a local air ventilation system for fume removal, which is operated in a zinc galvanizing factory, and to propose the improvement plan for a ventilation system used in a zinc galvanizing factory through flow analysis. A part of the air sprayed by an air curtain goes out. It will be necessary to research the position of an air curtain, its spray angles, and its nozzle shape. In addition, additional research needs to be conducted on the shape of the fan installed before a hood in order to make it easy to induce fume. In a local air ventilation system, air is inhaled from the outside. The higher an inlet negative pressure is, the easier fume is removed. It was found that it was necessary to install an appropriate hole in the wall on the back of a push nozzle in order to reduce an inlet negative pressure.

이류체 노즐을 이용한 유전체장벽방전 플라즈마 가스의 OH 라디칼 생성 향상 (Enhancement of OH Radical Generation of Dielectric Barrier Discharge Plasma Gas Using Air-automizing Nozzle)

  • 박영식
    • 한국환경과학회지
    • /
    • 제27권8호
    • /
    • pp.621-629
    • /
    • 2018
  • Many chemically active species such as ${\cdot}H$, ${\cdot}OH$, $O_3$, $H_2O_2$, hydrated $e^-$, as well as ultraviolet rays, are produced by Dielectric Barrier Discharge (DBD) plasma in water and are widely use to remove non-biodegradable materials and deactivate microorganisms. As the plasma gas containing chemically active species that is generated from the plasma reaction has a short lifetime and low solubility in water, increasing the dissolution rate of this gas is an important challenge. To this end, the plasma gas and water within reactor were mixed using the air-automizing nozzle, and then, water-gas mixture was injected into water. The dissolving effect of plasma gas was indirectly confirmed by measuring the RNO (N-Dimethyl-4-nitrosoaniline, indicator of the formation of OH radical) solution. The plasma system consisted of an oxygen generator, a high-voltage power supply, a plasma generator and a liquid-gas mixing reactor. Experiments were conducted to examine the effects of location of air-automizing nozzle, flow rate of plasma gas, water circulation rate, and high-voltage on RNO degradation. The experimental results showed that the RNO removal efficiency of the air-automizing nozzle is 29.8% higher than the conventional diffuser. The nozzle position from water surface was not considered to be a major factor in the design and operation of the plasma reactor. The plasma gas flow rate and water circulation rate with the highest RNO removal rate were 3.5 L/min and 1.5 L/min, respectively. The ratio of the plasma gas flow rate to the water circulation rate for obtaining an RNO removal rate of over 95% was 1.67 ~ 4.00.

PIV기법을 이용한 병렬 평면제트의 유동특성 (I) - 유입이 제한된 제트 - (The Flow Characteristics of Parallel Plane Jets Using Particle Image Velocimetry Technique (I) - Unventilated Jet -)

  • 김동건;윤순현
    • 대한기계학회논문집B
    • /
    • 제27권3호
    • /
    • pp.302-310
    • /
    • 2003
  • Experiments were conducted to show the characteristics of the flow on unventilated parallel plane jets. Measurements of mean velocity components and turbulent intensities were carried out with a particle image velocimetry to investigate the flow field generated by the air issued from two identical plane parallel nozzles and mixed with the ambient air. The measurements range of these experiments were Reynolds number of 5300 based on the nozzle width and the cases of nozzle-to-nozzle distance were four times. six times and eight times the width of the nozzle. Results show that a recirculation zone with a sub-atmospheric static pressure was bounded by the inner shear layers of the individual jets and the nozzles plate. The positions. where maximum value of mean turbulent intensities and mean turbulent kinetic energy show, were at the same position with the merging point. The spread of jets in the merging region increases more rapidly than that of Jets in the converging and the combined region. As nozzle-to-nozzle distances were increased. it was shown that merging and combined lengths were shorter.

은나노 공조시스템의 열교환기 설계를 위한 노즐의 분무특성 실험 (An Experimental Study on Nozzle Spray Characteristics for the Design of Heat Exchangers of a Nano-Silver HVAC System)

  • 허주영;강병하
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.534-537
    • /
    • 2008
  • Growing attention has been given to sterilizing and antibacterial effects of nano-silver, recently. Nano-silver solution can be applied to the heat exchanger in an air conditioner to prevent bad smell or bacteria. The present study is directed at the nozzle spray characteristics over a heat exchanger. This problem is of particular interest in the design of a nano-silver HVAC system. The effects of nozzle position and flow rate on the spray area over a horizontal surface have been investigated for various nozzles. The results obtained indicate that spray area is increased as the height of spray position is increased or mass flow rate is increased. The wetted area over a practical heat exchanger is also studied at a given nozzle height. It is found that the wetted area is gradually increased with an increase in the flow rate. However, the effect of flow rate on the wetted area is a little affected by flow rate in the range of too much flow rate. It is also found that the wetted area is decreased as the inclination angle of a heat exchanger is increased.

  • PDF