• 제목/요약/키워드: Air Layer

검색결과 1,862건 처리시간 0.033초

김해지방의 지표경계층내의 열수지 및 안정도 변화에 관한 연구 (A Study on the Variations of Stability and Heat Budget in the Planetary Boundary Layer at Kimhae)

  • 박종길;이화운;김유근;이순환
    • 한국대기환경학회지
    • /
    • 제13권2호
    • /
    • pp.103-113
    • /
    • 1997
  • The research described in this paper was conducted to estimate the stability and heat budget in planetary boundary layer (PBL) at Kimhae. The upper air observation was carried out during period from 3 Februsry 1993 to 5 February 1993 at Kimhae. The surface observation data used the one during period from 1 April 1994 to 31 March 1995. The maximum height of inversion layer observed at Kimhae was 310 m. Destruction of the inversion was simultaneously occurred at the surface and the mid-layer (200 $\sim$ 300 m), however the origin of destruction is different each other. The surface inversion is destructed by surface heating owing to growing radiation in surface but disappearance of the mid-layer inversion is related to the upper cold air movement.

  • PDF

KCN 에칭 및 CdS 후열처리가 Cu(In,Ga)(S,Se)2 광흡수층 성능에 미치는 영향 (Effect of Pre/Post-Treatment on the Performance of Cu(In,Ga)(S,Se)2 Absorber Layer Manufactured in a Two-Step Process)

  • 김아현;이경아;전찬욱
    • 신재생에너지
    • /
    • 제17권4호
    • /
    • pp.36-45
    • /
    • 2021
  • To remove the Cu secondary phase remaining on the surface of a CIGSSe absorber layer manufactured by the two-step process, KCN etching was applied before depositing the CdS buffer layer. In addition, it was possible to increase the conversion efficiency by air annealing after forming the CdS buffer layer. In this study, various pre-treatment/post-treatment conditions wereapplied to the S-containing CIGSSe absorber layerbefore and after formation of the CdS buffer layer to experimentally confirm whether similareffects as those of Se-terminated CIGSe were exhibited. Contrary to expectations, it was noted that CdS air annealing had negative effects.

초음속 2차원 2단 혼합층에서 중간층의 역할 (A Study on the Effect of Mid Layer on Supersonic 2D Double Shear Layer)

  • 김동민;백승욱
    • 한국추진공학회지
    • /
    • 제19권1호
    • /
    • pp.9-17
    • /
    • 2015
  • 기본 유동 형상은 상대적으로 얇은 중간층이 연료와 공기 사이에 끼어있는 평행 2단 혼합층으로 구성되어 있다. 본 연구는 중간층의 두께 변화에 따른 연소 향상을 수치해석을 통해 조사하였다. 이 경우에, 난류 혼합층에서 열 방출에 의한 효과가 중요하다. 수치해석을 수행하기 위해 완전 보존적인 비정상 2차 시간 정확도의 하부 반복 기법과 2차 총 변화 억제 기법을 k-${\omega}$ 전단응력이동 모델이 결합된 유한체적법과 함께 사용하였다. 다음과 같이 3개의 경우에 대해 해석을 수행하였다. 연료와 공기로 구성된 단일 혼합층, 연료와 공기 사이에 불활성 기체층이 끼어있는 2단 혼합층, 그리고 연료와 공기 사이에 차가운 연료층이 끼어있는 2단 혼합층. 수치해석은 중간 기체층이 1, 2, 4 mm 인 경우에 대하여 수행되었다. 기체층의 총 두께는 4 cm이다. 불활성기체층이 2, 4 mm인 경우와 저온의 연료층이 4 mm인 경우에 단일 혼합층의 경우보다 연소영역이 확대된다.

태양열 집열판 공기층의 열 및 유체유동 (Thermal and Fluid Flow of the air layer in a solar collector)

  • 배강열;이중섭;이광성;정효민;정한식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.642-647
    • /
    • 2001
  • This study represents numerical analysis on the thermal and fluid flow of the air layer in a solar collector. The boundary conditions was assumed that the top and bottom wall of the air layer have a heating and cooling surface. respectively. and this calculation model have a solid body with a cooling temperature of $20^{\circ}C$. As the results of simulations. the magnitudes of the velocity vectors and isotherms are increased proportionally to the tilt angles. As the tilt angle is increased. the mean Nusselt numbers are increased and the maximum value of the mean Nusselt number was appeared at tilt angle ${\theta}=75^{\circ}$.

  • PDF

ZnO를 이용한 air-gap 형태의 FBAR 소자 제작에 대한 연구 (A study of air-gap type FBAR device fabrication using ZnO)

  • 박성현;이순범;신영화;이능헌;이상훈;추순남
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1414-1415
    • /
    • 2006
  • Air-gap type film bulk acoustic wave resonator device using ZnO for piezoelectric layer and sacrifice layer, deposited by RF magnetron sputter with various conditions, fabricated in this study. Also, membrane$(SiO_2)$ and top and bottom electrode(both Al) of piezoelectric layer deposited by RF magnetron sputter. Using micro electro mechanical systems(MEMS) technique, sacrifice layer removed and then air-gap formed. The results of each process checked by XRD, AFM, SEM to obtain good quality device.

  • PDF

공기윤활에 의한 액화천연가스운반선의 마찰저항저감 평가 및 공기 분사부 배치에 대한 연구 (Study on the Evaluation of Frictional Drag Reduction by Air Lubrication and the Arrangement of Air Injection Parts for a Liquefied Natural Gas Carrier)

  • 김희택;김형태;김현조;김정중
    • 대한조선학회논문집
    • /
    • 제58권3호
    • /
    • pp.144-157
    • /
    • 2021
  • Brake Horse Power (BHP) reduction ratios by air injection to the underside of the hull surface in an actual ship are predicted using an unstructured finite-volume CFD solver and compared with the sea trial results. In addition, air lubrication system installed on the existing vessel is investigated to find a good solution for additional drag reduction. As a results, it is found that the thickness of the air layer should be minimized within a stable range while securing the area covered by the air layer as much as possible. Furthermore, the amount of frictional drag reduced by air injection is found to be independent of surface roughness and still effective on rough surface. Based on the results of this study, it is expected that systematic and reliable air lubrication system can be designed and evaluated using the proposed method.

소수력발전용 횡류수차의 공기층효과에 의한 성능향상 (Performance Improvement of Cross-Flow type Small Hydro Turbine by Air Layer Effect)

  • 최영도;안영준;신병록;이동엽;이영호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1070_1071
    • /
    • 2009
  • Recently, small hydropower attracts attention because of its clean, renewable and abundant energy resources to develop. Therefore, a cross-flow hydraulic turbine is proposed for small hydropower development in this study. The turbine‘s simple structure and high possibility of applying to the sites of relatively low effective head and large flow rate can be advantages for the introduction of the small hydropower development. The purpose of this study is not only to investigate the effects of air layer in the turbine chamber on the performance and internal flow of the cross-flow turbine, but also to suggest a newly developed air supply method. CFD analysis for the performance and internal flow of the turbine is conducted by an unsteady state calculation using a two-phase flow model in order to embody the air layer effect on the turbine performance effectively. The result shows that air layer effect on the performance of the turbine is considerable. The air layer located in the turbine runner passage plays the role of preventing a shock loss in the runner axis and suppressing a recirculation flow in the runner. The location of air suction hole on the chamber wall is very important factor for the performance improvement. Moreover, the ratio between air from suction pipe and water from turbine inlet is also significant factor of the turbine performance.

  • PDF

Internal Flow Analysis on an Open Ducted Cross Flow Turbine with Very Low Head

  • Wei, Qingsheng;Hwang, Yeong-Cheol;Choi, Young-Do
    • 한국유체기계학회 논문집
    • /
    • 제17권5호
    • /
    • pp.67-71
    • /
    • 2014
  • Recently, the cross flow turbine attracts more and more attention for its good performance over a large operating regime at off design point. This study adopts a very low head cross flow turbine that has barely been studied before, and investigates the effect of air layer on the performance of the cross flow turbine. As open duct is applied in this study and free surface model is used between the air layer and water, an engineering definition of efficiency, instead of traditional definition of efficiency, is used. As torque at the runner fluctuates up and down at a reasonable limit, statistical method is used. Pressure and water volume fraction contours are shown to present the characteristics of air-water flow. With constant air suction in the runner chamber, the water level gradually drops below the runner and efficiency of the turbine can be raised by 10 percent. All considered, the effect of air layer on the performance of turbine is considerable.

고온 태양열 공기식 흡수기 충진재에 따른 열전달 성능분석 (Heat transfer performance with laminated mesh and honeycomb volumetric air receivers for the high-temperature solar power plant system)

  • 이주한;김용;전용한;서태범;강용혁
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.184-187
    • /
    • 2006
  • The heat transfer characteristics of solar tower receivers are experimentally investigated with receiver shapes. Generally the heat transfer characteristics become different according to the shapes and materials of the volumetric air receiver. In order to study these effects, The experimental apparatus adopting laminated mesh and honeycombs as the volumetric air receiver is proposed. The receiver consists of laminated mesh (diameter; 100mm, thickness; 1mm), honeycombs (diameter; 100mm, thickness; 30 mm) inserted out the heat transfer characteristics of the laminated mesh the air temperatures are obtained by installing 3 thermocouples on each layer, dividing ceramic tube into 4 layers. Also, a radiative shield is installed to measure the only air temperature. The data for laminated mesh and honeycomb thickness of 30, 60, 90mm are obtained. The results show that the temperature of layer 3 is higher than those of layer 2 and layer 1.

  • PDF

좁은 채널 내부의 수직 혼합 경계층에 형성된 메탄-공기 에지-화염의 안정화 기초 실험 (A Fundamental Experiment on the Stabilization of a Methane-Air Edge Flame in a Cross-Flowing Mixing Layer in a Narrow Channel)

  • 이민정;김남일
    • 대한기계학회논문집B
    • /
    • 제33권7호
    • /
    • pp.527-534
    • /
    • 2009
  • Flame stabilization characteristics were experimentally investigated in a fuel-air cross flowing mixing layer. A combustor consists of a narrow channel of air steam and a cross flowing fuel. Depending on the flow rates of methane and air, flame can be stabilized in two modes. First is an attached flame which is formulated at the backward step where the methane and air streams meet. Second is a lifted-flame which is formulated within the mixing layer far down steam from backward step. The heights and flame widths of the lifted flames were measured. Flame shapes of the lifted flames were similar to an ordinary edge flame or a tribrachial flame, and their behavior could be explained with the theories of an edge flame. With the increase of the mixing time between fuel and air, the fuel concentration gradient decreases and the flame propagation velocity increases. Thus the flame is stabilized where the flow velocity is matched to the flame propagation velocity in spite of a significant disturbance in the fuel mixing and heat loss within the channel. This study provides many experimental results for a higher fuel concentration gradient, and it can also be helpful for the development and application of a smaller combustor.