• Title/Summary/Keyword: Air Journal Bearing

Search Result 375, Processing Time 0.03 seconds

Prediction of Axial Thrust Load under Turbocharger Operating Conditions (운전 상태에서의 터보차저 축 추력 예측)

  • Lee, Inbeom;Hong, Seongki;Kim, Youngchul;Choi, Boklok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.642-648
    • /
    • 2016
  • This paper deals with an analytical and experimental investigation to predict the axial thrust load that results from turbocharger operating conditions. The Axial forces acting on the turbocharger thrust bearing are caused by the unbalance between turbine wheel gas forces and compressor wheel air forces. It has a great influence on the friction losses, which reduces the efficiency and performance of high-speed turbocharger. This paper presents the calculation procedure for the axial thrust forces under operating conditions in a turbocharger. The first step is to determine the relationship between thrust forces and strains by experimental and numerical methods. The analysis results were verified by measuring the strains on a thrust bearing with the specially designed test device. And then, the operating strains and temperatures were measured to inversely calculate the thrust strains which were compensated the thermal effects. Therefore it's possible to calculate the magnitudes of the thrust forces under operating turbocharger by comparing the regenerated strains with the rig test results. It will possible to optimize the design of a thrust bearing for reducing the mechanical friction losses using the results.

Development of Wafer Grinding Spindle with Porous Air Bearings (다공질 공기 베어링을 적용한 반도체 웨이퍼 연마용 스핀들 개발)

  • Donghyun Lee;Byungock Kim;Byungchan Jeon;Gyunchul Hur;Kisoo Kim
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.28-34
    • /
    • 2023
  • Because of their cleanliness, low friction, and high stiffness, aerostatic bearings are used in numerous applications. Aerostic bearings that use porous materials as means of flow restriction have higher stiffness than other types of bearings and have been successfully applied as guide bearings, which have high motion accuracy requirements. However, the performances of porous bearings exhibit strong nonlinearity and can vary considerably depending on design parameters. Therefore, accurate prediction of the performance characteristics of porous bearings is necessary or their successful application. This study presents a porous bearing design and performance analysis for a spindle used in wafer polishing. The Reynolds and Darcy flow equations are solved to calculate the pressures in the lubrication film and porous busing, respectively. To verify the validity of the proposed analytical model, the calculated pressure distribution in the designed bearing is compared with that derived from previous research. Additional parametric studies are performed to determine the optimal design parameters. Analytical results show that optimal design parameters that obtain the maximum stiffness can be derived. In addition, the results show that cross-coupled stiffness increases with rotating speed. Thus, issues related to stability should be investigated at the design stage.

Rotordynamic Analysis of a Dual-Spool Turbofan Engine with Focus on Blade Defect Events (블레이드 손상에 따른 이축식 터보팬 엔진의 동적 안정성 해석)

  • Kim, Sitae;Jung, Kihyun;Lee, Junho;Park, Kihyun;Yang, Kwangjin
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.105-115
    • /
    • 2020
  • This paper presents a numerical study on the rotordynamic analysis of a dual-spool turbofan engine in the context of blade defect events. The blades of an axial-type aeroengine are typically well aligned during the compressor and turbine stages. However, they are sometimes exposed to damage, partially or entirely, for several operational reasons, such as cracks due to foreign objects, burns from the combustion gas, and corrosion due to oxygen in the air. Herein, we designed a dual-spool rotor using the commercial 3D modeling software CATIA to simulate blade defects in the turbofan engine. We utilized the rotordynamic parameters to create two finite element Euler-Bernoulli beam models connected by means of an inter-rotor bearing. We then applied the unbalanced forces induced by the mass eccentricities of the blades to the following selected scenarios: 1) fully balanced, 2) crack in the low-pressure compressor (LPC) and high pressure compressor (HPC), 3) burn on the high-pressure turbine (HPT) and low pressure compressor, 4) corrosion of the LPC, and 5) corrosion of the HPC. Additionally, we obtained the transient and steady-state responses of the overall rotor nodes using the Runge-Kutta numerical integration method, and employed model reduction techniques such as component mode synthesis to enhance the computational efficiency of the process. The simulation results indicate that the high-vibration status of the rotor commences beyond 10,000 rpm, which is identified as the first critical speed of the lower speed rotor. Moreover, we monitored the unbalanced stages near the inter-rotor bearing, which prominently influences the overall rotordynamic status, and the corrosion of the HPC to prevent further instability. The high-speed range operation (>13,000 rpm) coupled with HPC/HPT blade defects possibly presents a rotor-case contact problem that can lead to catastrophic failure.

A Study on the Lift-off Characteristics of an Air-lubricated Bump Foil Journal Bearing (공기윤활 범프 저어널 베어링의 부상 특성에 관한 연구)

  • 이남수;이용복;최동훈;김창호
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.236-242
    • /
    • 2001
  • In this paper the effect of bump compliance, load, and the number of pad on the lift-off speed is studied. When the load is greater and bump compliance lower, the shaft is lifted off at higher rotating speed. And when the load is applied near the center of pad, lift-off speed is lower. When the number of pad increases, the lift-off speed is higher. The lift-off characteristics can be used to lengthen the life time of the coating and design the rotating machinery supported by bump bearings.

  • PDF

Improvement of High Speed Stability of Air Lubricated Slot Restrictor Journal Bearing using Variation of Slot Shape (공기윤활 슬롯 레스트릭터 저어널 베어링의 슬롯형상변화를 이용한 고속안정성 향상)

  • 박정구;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04b
    • /
    • pp.80-85
    • /
    • 1996
  • 외부가압공기베어링중에서 Fig. 1과 같이 베어링 간극과 비슷항 크기의 간극을 갖는 슬롯을 통하여 공기를 공급하는 형태의 베어링을 슬롯 레스트릭터 공기베어링이라고 한다. 본 연구에서는 공기 윤활 외부가압 슬롯레스트릭터 저어널 베어링의 슬롯의 형상을 변화하는 방법을 이용하여 고속안정성이 우수한 또 다른 슬록의 형상을 제안하고 제안된 슬롯의 고속안정성을 해석하기로 한다.

  • PDF

Numerical Investigation of Flow Structures near Various Nozzle Exit Geometries of the Air Bearing (공기베어링의 노즐 형상 변화에 따른 출구면 근방의 유동구조에 대한 수치해석)

  • Park, Byung Ho;Han, Yong Oun;Park, Sang-Shin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.235-242
    • /
    • 2014
  • To investigate pressure distributions on the shaft surface of the air bearing, the commercial CFD software was employed to study three different nozzle geometries to improve the nozzle performance: general drill-shaped, matched cube-shaped and trimmed exit nozzles. Under the influence of stagnation point, the maximum pressure was observed at the center of shaft surface for all cases. Owing to the blocking effect of a fine gap between the shaft surface and the nozzle exit, the drill-shaped nozzle has the rapid local pressure increase near the nozzle exit corner, generating the ring vortex in the radial direction within pressure ratio of 6.92, and its pressure becomes negative in a certain range of downstream. In comparison, the contoured nozzle showed a local pressure increase in the measured range of pressure ratios, but a negative pressure appeared within the pressure ratio of about 10. The trimmed nozzle was seemed to extend the high pressure zone near the stagnation point in the radial direction substantially, and no negative pressure was appeared in the whole range. Based on these observations, it is found that trimming nozzle exit becomes more effective for improving the performance than modifying the nozzle inside contour.

Treatment of ASR from End-of-Life Vehicles by Air and Gravimetric Separation (廢自動車 ASR의 風力 및 比中選別에 의한 處理 硏究)

  • Lee, Hwa-Young;Oh, Jong-Kee
    • Resources Recycling
    • /
    • v.14 no.2
    • /
    • pp.3-9
    • /
    • 2005
  • A study on the air and gravity separation has been performed for the removal of chlorine containing materials from ASR of end-of-life vehicles. The gravity separation was also conducted on waste plastics collected from ASR. In this work, ASR were previously shredded to pass through 8 mm sieve prior to separation tests and the gravity separation of waste plastics was conducted for three different particle sizes. The two-stage air classification was conducted with the range of air flow rate of 9~20 M$^3$/hr at first stage and 25~34 M$^3$/hr at second stage, respectively. The fraction of overflow product was remarkably increased in the 2nd stage air classification because of high air flow rate while that of underflow product obtained from 1st stage air classification was found to be 62~66%. From the results of gravity separation on waste plastics, it was also found that the amount of the float product was much greater than sink product. It is believed that the gravity separation may be used very efficiently for the removal of calorine bearing materials from waste plastics.

The Dynamic Performance Analysis of Foil Journal Bearings Considering Coulomb Friction: Rotating Unbalance Response (마찰을 고려한 포일저널베어링의 동특성해석: 회전불균형 응답)

  • Kim, Kyung-Woong;Lee, Dong-Hyun;Kim, Young-Cheol
    • Tribology and Lubricants
    • /
    • v.23 no.5
    • /
    • pp.219-227
    • /
    • 2007
  • The dynamic performance of air foil bearings relies on a coupling between a thin air film and an elastic foil structure. A number of successful analytical techniques to predict dynamic performance have been developed. However, the evaluation of its dynamic characteristic is still not enough because of the mechanical complexity of the foil structure and strong nonlinear behavior of friction force. This work presents a nonlinear transient analysis method to predict dynamic performance of foil bearings. In this method, time dependent Reynolds equation is used to calculate pressure distribution and a finite element method is used to model the bump foil structure. The analysis is treated with a direct implicit integration technique that can handle nonlinear problems and the stick-slip algorithm is used to consider friction force. Using this method the response to the mass unbalance excitation is investigated for various design parameters and operating conditions. The results of analysis show that foil bearing is very effective on the restriction of vibration at the resonance frequency compared to the rigid surface bearings and the effectiveness depends on the operating conditions, static load and a amount of mass unbalance. In addition, there exist optimum values of friction coefficient, bump foil stiffness and number of circumferential slit with regards to minimizing dynamic response at the resonance frequency. These optimum values are system dependent.

Take Off Characteristics of Slider for Various LZT Disks and Ambient Pressures (레이저 범프와 대기압 변화에 대한 하드디스크 슬라이더의 부상 특성)

  • Lee, Sang-Min;Kim, Dae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2646-2653
    • /
    • 2000
  • The performance of slider of a hard disk drive affects the durability of the system. Particularly, the flying ability of the slider is critical in terms of surface damage and head crash. In this work, the take-off characteristics of the slider for various types of laser zone textured bump geometries were investigated. Also, the effect of ambient pressure on the flying characteristics of the slider was experimentally observed. An index of air density which can be used as a parameter for evaluating the flying characteristic is introduced.

Optimum Design of Optical Flying Head Using EMDIOS (EMDIOS를 이용한 Optical Flying Head의 형상 최적설계)

  • Choi Dong-Hoon;Yoon Sang-Joon
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.1
    • /
    • pp.67-72
    • /
    • 2005
  • This study proposes a design methodology to determine the optimum configurations of the optical flying head (OFH) for near-field recording systems. Since the OFH requires stricter static and dynamic characteristics of slider air-bearings within an optical tilt tolerance over the entire recording band, an optimum design to keep the focusing and tracking ability stable is essential. The desired flying characteristics considered in this study are to minimize the variation in flying height between the SIL and the disk from a target value, satisfying the restriction of the minimum flying height, to keep the pitch and roll angles within an optical tilt tolerance, and to ensure a higher air-bearing stiffness. Simulation results demonstrate the effectiveness of the proposed design methodology by showing that the static and dynamic flying characteristics of the optimally designed OFH are enhanced in comparison with those of the initial. The gap between the SIL and the disk can be kept at less than 100 nm even if the optical tilt tolerance of the SIL is considered.

  • PDF