• Title/Summary/Keyword: Air Journal Bearing

Search Result 375, Processing Time 0.029 seconds

Characteristics of Friction Torques and Lubrication in High Speed Angular Contact Ball Bearings (고속 앵귤러 콘택트 볼베어링의 마찰 토크 및 윤활 특성)

  • 반종억;김경웅
    • Tribology and Lubricants
    • /
    • v.13 no.4
    • /
    • pp.47-52
    • /
    • 1997
  • Friction torques, electrical contact resistances and bearing temperatures were measured on high speed angular contact ball beatings for the spindle of machine tools. The test bearings ran with oil-air lubrication at the thrust loads from 320 N to 1920 N and at the rotational speed of up to 12000 rpm. Electrical contact resistances between balls and races were measured to evaluate the formation of the lubricant film in the contact area. The test results with sufficient lubrication showed that the variations of friction torques were sensitive to the thrust loads and the rotational speeds, and that the friction torques were higher than those with insufficient lubrication. With insufficient lubrication and high thrust loads, the collapse of the lubricant film was detected even at a high rotational speed. It was concluded that these high speed beatings to run in condition of fluid lubrication should require monitoring not only the temperature increase of the bearing but also the lubricant film formation in contact areas resulting from the change in the applied load and the lubricant amount.

Sliding Mode Control of an Active Magnetic Bearing System (능동자기베어링계의 슬라이딩모드 제어)

  • 강민식
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.439-448
    • /
    • 2004
  • Magnetic bearing is an attractive device in precision engineering field because of its non-contacting nature and controllability of its dynamic characteristics. This paper provides a method of designing a sliding mode control for an active magnetic hearing(AMB) system which is used to support the elevation axis of a target tracking sight instead of mechanical bearings to eliminate the effect of mechanical friction. In such system, the axis should be levitated and supported within a predetermined air gap while AMB is excited by base motion. Experimental results showed that the sliding mode control is effective in disturbance rejection than conventional PID-control without any additive measurements.

Abnormal vibration of steam turbine due to carbon deposit at journal bearing in 500MW thermal power plant (탄소 고형물에 의한 터빈의 이상 진동)

  • 구재량;황재현;김연환;이우광
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.234-238
    • /
    • 2002
  • Lubricating oil supply system is an essential instrument for safe turbine operation. A lubricating condition may cause the abnormal vibration of turbine. In this paper we have discussed the abnormal vibration of turbine due to lubricating oil. Dusts of the air usually attach to end of the oil deflector and contact particles of the bearing oil. Dusts which were contacted particles of the bearing oil were changed into carbon deposit because of high temperature. therefore, carbon deposits occur abnormal vibration of the turbine when they contact a rotor. So, we have solved this problems through the various maintenance.

  • PDF

Finite Difference Analysis of Dynamic Characteristics of Negative Pressure Rectangular Porous Gas Bearings (음압 직각 다공질 공기베어링의 동특성에 관한 유한차분 해석)

  • Hwang Pyung;Khan Polina;Lee Chun-Moo;Kim Eun-Hyo
    • Tribology and Lubricants
    • /
    • v.22 no.2
    • /
    • pp.93-98
    • /
    • 2006
  • The numerical analysis of the negative pressure porous gas bearings is presented. The pressure distribution is calculated using the finite difference method. The Reynolds equation and Darcy's equation are solved simultaneously. The air bearing stiffness and damping are evaluated using the perturbation method. Rectangular uniform grid is employed to model the bearing. The vacuum preloading is considered. The pressure in the vacuum pocket is assumed to be a constant negative pressure. The total load, stiffness, damping and flow rate are calculated fur several geometrical configurations and several values of negative pressure. It is found that too large vacuum pocket can result in negative total force.

A Study on Air-Lubricated Spherical Tilting Pad Bearings (공기윤활 구면틸팅패드베어링에 대한 연구)

  • 김성국;김경웅
    • Tribology and Lubricants
    • /
    • v.17 no.2
    • /
    • pp.116-123
    • /
    • 2001
  • A theoretical analysis has been undertaken to show the influence of bearing geometry on the steady state characteristics of air lubricated spherical tilting pad bearings. The geometry variations considered are the number of pads, the eccentricity ratio, the direction of load, and the preloading. Dynamic characteristic equations are derived with pad assembly method.

Theoretical Analyses of Herringbone Grooved Air Thrust Bearings (헤링본 그루브 공기 스러스트 베어링의 해석)

  • Park, Sang-Shin;Jang, Woo-Young
    • Tribology and Lubricants
    • /
    • v.27 no.5
    • /
    • pp.233-239
    • /
    • 2011
  • In this study, the characteristics of herringbone grooved air thrust berings are studied. It is shown that a generalized coordinate transformation method which was developed for handling complex geometry such as herring bone groove journal bearings is well applied to herringbone grooved air thrust bearings. The load carrying capacity and stiffness and damping coefficients are calculated according to the design parameters like groove depth or the number of grooves and compared to that of plain air journal bearings.

A Control of the High Speed BLDC Motor with Airfoil Bearing (Airfoil Bearing 이 장착된 초고속 BLDC 모터 제어)

  • Jeong, Yeon-Keun;Kim, Han-Sol;Baek, Kwang Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.925-931
    • /
    • 2016
  • The BLDC motor is used widely in industry due to its controllability and freedom from maintenance because there is no mechanical brush in the BLDC motor. Furthermore, it is suitable for high-speed applications, such as compressors and air blowers. For instance, for a compressor with a small impeller due to miniaturizing, the BLDC motor has to rotate at a very high speed to maintain the compression ratio of the compressor. Typically, to reach an ultra-high speed, airfoil bearings must be used in place of ball bearings because of their friction. Unfortunately, the characteristics of airfoil bearings change drastically depending on the revolution speed. In this paper, a BLDC motor with airfoil bearings is controlled with a PID controller. To analyze and determine the PID coefficients, the relay-feedback method is used. Additionally, for adaptive control, a fuzzy logic controller is used. Furthermore, the auto-tuning and self-tuning techniques are combined to control the BLDC motor. The proposed method is able to control the airfoil-bearing BLDC motor efficiently.

A Study on Air-gap Control for Transverse Flux Permanent Magnet Type Magnetic Levitation Electromagnet System (횡자속 영구자석형 자기부상전자석 시스템의 공극제어에 관한 연구)

  • Jae-Won Lee;Myeong-Jae Kim;Seon-Hwan Hwang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1127-1134
    • /
    • 2023
  • In this paper, we proposes a study on air gap control for magnetic levitation of transverse flux permanent magnet electromagnets. In general, mechanical systems have a high failure rate of bearings. Bearings in particular are problematic because they have high surface wear rate and degradations. To solve this problem, replacing the bearing with a magnetic levitation electromagnet system can provide lightweight and efficiency improvements. However, precise air gap control is essential to control the magnetic levitation electromagnet system. Therefore, in this paper, we identify the instable cause of gap control through a mathematical modeling and verify through experiment a control algorithm that can use compensation.

Synthesis of $WS_2$ Solid Lubricant and Its Application to Ball Bearing ($WS_2$고체윤활제의 합성 및 구름베어링 적용)

  • 신동우;윤대현;최인혁;김경도;정진수;정용선
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.77-82
    • /
    • 1999
  • The processing conditions fur the synthesis of platelet W $S_2$ lubricant powder through a solid-gas reaction were optimized. The mixture of tungsten and sulfur powders were sealed in a vacuum of 10$^{-6}$ torr, prior to heat-treating at 85$0^{\circ}C$ fur 8 days. The reaction product showed a well-developed platelet W $S_2$ powder with an average size of 3.8 ${\mu}{\textrm}{m}$. The TGA/DTA analysis of the synthesized W $S_2$ powder was performed up to 120$0^{\circ}C$ at a rate of 1$0^{\circ}C$/min in flowing air (100 ${\mu}{\textrm}{m}$/min) atmosphere. The weight loss was about 6% up to 120$0^{\circ}C$ compared to the original weight. A rapid weight loss of about 5% occurred in the temperature range of 44$0^{\circ}C$ to 66$0^{\circ}C$ and an exothermic peak observed due to the transition of W $S_2$ to W $O_3$. The synthesized W $S_2$powder was coated on the commercial deep grooved ball bearing (No. 6203) to examine the effect of W $S_2$, coating layer on the noise and endurance of the ball bearing. The level of noise obtained from W $S_2$, coated-ball bearing (56 ㏈) was higher. than the value (32 ㏈) occurred in the case of greece lubrication. The endurance of the ball-bearing assembled after the coating of W $S_2$ powder onto each part increased 50 times compared to the non-coated ball-bearing..

Effect of polymer addition on air void content of fine grained concretes used in TRCC

  • Daskiran, Esma Gizem;Daskiran, Mehmet Mustafa;Gencoglu, Mustafa
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.165-176
    • /
    • 2017
  • Textile Reinforced Cementitious Composite (TRCC) became the most common construction material lately and have excellent properties. TRCC can be employed in the manufacture of thin-walled facade elements, load-bearing integrated formwork, tunnel linings or in the strengthening of existing structures. These composite materials are a combination of matrix and textile materials. There isn't much research done about the usage of polymer modified matrices in textile reinforced cementitious composites. In this study, matrix materials named as fine grained concretes ($d_{max}{\leq}1.0mm$) were investigated. Air entraining effect of polymer modifiers were analyzed and air void content of fine grained concretes were identified with different methods. Aim of this research is to study the effect of polymer modification on the air content of fine grained concretes and the role of defoamer in controlling it. Polymer modifiers caused excessive air entrainment in all mixtures and defoamer material successfully lowered down the air content in all mixtures. Latex polymer modified mixtures had higher air content than redispersible powder modified ones. Air void analysis test was performed on selected mixtures. Air void parameters were compared with the values taken from air content meter. Close results were obtained with tests and air void analysis test found to be useful and applicable to fine grained concretes. Air void content in polymer modified matrix material used in TRCC found significant because of affecting mechanical and permeability parameters directly.