• Title/Summary/Keyword: Air Injection

Search Result 1,203, Processing Time 0.037 seconds

Design of Gas Burner for Cooking (조리기기용 가스버너 설계)

  • Shim, S.H.;Kim, S.J.;Keel, S.I.;Yun, J.H.;Kim, I.K.;Han, I.H.;Lee, D.R.
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.202-211
    • /
    • 2000
  • Characteristics of the fuel injection and entrainment of the primary air of gas burner have been investigated. Primary air flow rates that entrained by gas streams play major role to control the performance of the partially premixed combustion. Pressure distributions of mixing tube assembly are studied as major parameter for increasing the primary air flow rates. Buoyancy-effect burner is proposed as one alternative to improve the pressure distribution. Buoyancy effect caused by metal ring placed around the flame holes reduces pressure of the entrance of the mixing tube and that, entrained air flow rates are increased.

  • PDF

NUMERICAL ANALYSIS OF A 150KW HUELS TYPE ARC HEATER (150kW급 Huels형 아크 히터 내부의 유동 해석)

  • Han, S.H.;Byeon, J.Y.;Kim, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.562-566
    • /
    • 2010
  • Numerical analysis of 150kW Huels-type arc jet was performed using compressible Navier-Stokes CFD code. To consider chemical reaction by high temperature, the flow was assumed to be chemical equilibrium states. As a turbulence and a radiation model, the two-equation k-epsilon model and the 3-band radiation model were adopted, respectively. Mass flow rate and current density were given as conditions for calculations. In this study, two kinds of mechanisms for injection of air flow wire considered. One is that air is provided by left wall surface and the other is that air is injected from upper wall surface. The pressure, density and temperature contours of two cases were compared and heat transfer rates were estimated. The numerical results of two cases were not much different to each other. However, in real 150KW device, air is injected from upper wall surface with swirl. To calculate more accurately, swirl effect is must be considered.

  • PDF

An Analytical Study on the Turbocharger Engine Matching of the Marine Four-Stroke Diesel Engine (선박용 4행정 디젤기관의 배기 과급기 엔진 매칭에 관한 해석적 연구)

  • Choi, Ik-Soo;Kim, Hyun-Kyu;Yoo, Bong-Whan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.86-87
    • /
    • 2005
  • The combustion characteristics of the D.I. diesel engine are largely dependent on the air-fuel ratio and the gas exchange process. The main factors are the shape of combustion chamber, fuel injection system, air flow inside the cylinder, intake air mass flow rate and so forth. Because these factors affect the combustion in a mutual and combined manner, it is very important to clearly understand the correlation of these factors in order to provide the combustion improvement plans. In this paper, we studied the performance and the gas exchange process of marine four-stroke engine using the engine cycle simulation. Also, we predicted briefly turbocharger engine matching.

  • PDF

An Experimental Study on NOx Emission under the High Temperature Air Combustion with Oil (오일이용 고온공기 연소시 NOx 저감기술)

  • Yang, J.B.;Kim, W.B.
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.81-88
    • /
    • 2002
  • It's well known that with the increase of preheated air temperature NOx is increasing ,while the energy consumption is decreasing. In this study the experimental study was carried out to find out a new method breaking the above-mentioned old concept. From the variation of configuration of gas nozzle and hot test on the temperature distribution and NOx, it was found out that the reduction of NOx was due to the effect of internal gas recirculation, which will be caused by air emitting velocity from burner nozzle.

  • PDF

An experimental study on the concentration distribution of helium and air mixture in the direct injection type engine (헬륨$\cdot$공기흡합기농도분포에 관한 실험적 연구)

  • 김봉곤;하종률;권순석
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.33-39
    • /
    • 1990
  • This study has been conducted by experiments for distribution of concentration of helium gas, which is jetted into stationary atmosphere at the normal temperature and pressure. It is able to obtain the data for concentration of helium and air mixtures by the use of hot wire probe which has fast response. At an up stream, the concentration gradient which is attained is steep. At a down stream, the mixing time of helium and air is gradually shortened with the lapse of time in front of a jet. The arrival frequency of a jet in an unsteady area is mostly constant from 0% to 100% up to 80mm, but the time which is reaching to 100% is gradually to lengthen as a descending downstream. After starting a jet and the point of 90%, the mixing time is especially to lengthen. This reason comes from the turbulent intensity which causes for mixing of helium and air. This time difference which causes according to lengthen a jet should be considered in the design of combustion chamber.

  • PDF

Change of Spray Characteristics with Mixing Port Length of Y-Jet Atomizers (Y-Jet 노즐에서의 혼합관 길이변화에 따른 분무특성 연구)

  • 송시홍;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3021-3031
    • /
    • 1994
  • Experiments have been performed to find out the effect of the mixing port length of Y-jet atomizers on the spray performance, using air and water as the test fluids. Water and air flow rates and drop sizes were measured at each injection pressure condition for different mixing port length. The air flow rate was almost unaffected by the change of the mixing port length. However, the water flow rate was relatively susceptible to the change of the mixing port length. The mixing point pressure was very much influenced by the mixing port length. Variations of spatial distribution of Sauter Mean Diameter (SMD, $D_{32}$) and the cross-section-averaged SMD ($D_{32,m}$) with different mixing port length and air/water mass flow rate ratio were examined. Generally, when the mixing port length was reduced, the mean drop size decreased and became spatially even.

Combustion Characteristics of Methane-Air Mixture in a Constant Volume Combustion Chamber(2) : Inhomogeneous Charge (정적연소기에서의 메탄-공기 혼합기의 연소특성(2) : 비균질급기)

  • 최승환;전충환;장영준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.29-36
    • /
    • 2003
  • A cylindrical constant volume combustion chamber was used to investigate the flow characteristics at spark plug and the combustion characteristics of inhomogeneous charge methane-air mixture under several parameters. The flow characteristics such as mean velocity and turbulence intensity was analyzed by hot wire anemometer. Combustion pressure development measured by piezoelectric pressure transducer was used to investigate the effect of initial charge pressure, excess air ratio and ignition times on combustion pressure and combustion duration. Mean velocity and turbulence intensity had the maximum value at 200 or 300ms and then decreased to beneath 0.05m/s gradually at 3 seconds. Second mixture is accompanied by an increase in the combustion rate, and that the higher the mass which is added in the second stage injection, the faster the burn rate.

Spray Visualization of the Gas Turbine Vaporizer (가스터빈 기화기의 분무 가시화 연구)

  • Jo, Sungpil;Joo, Milee;Choi, Seongman;Rhee, Dongho
    • Journal of ILASS-Korea
    • /
    • v.24 no.3
    • /
    • pp.130-136
    • /
    • 2019
  • Spray visualization of a vaporizer fuel injection system of a micro turbo jet engine was experimentally studied. The fuel heating by combustion was simulated by the high pressure steam generator and combustor inlet air from the centrifugal compressor was simulated by compressed air stored in the high pressure air tank. Spray visualization was performed with single vaporizer, and then six vaporizers which are same number of micro turbojet engine were used. As a results, the spray characteristics of the vaporizer were understood with pressure difference of the combustor inlet air and the fuel supply pressure. Spray angles with three types of vaporizer configuration were measured. In the results, guide vane configuration has a wider spray angle than the straight tube and smooth curve tube with a swirler, so it is expected that the fuel will be effectively distributed inside the combustor flame tube.

Rotor Initial Polarity Detection Method of Single-Phase PMSM Considering Asymmetric Air-Gap Structure (단상 영구자석 동기 전동기의 비대칭 공극 구조를 고려한 회전자 초기 자극 검출 기법)

  • Seo, Sung-Woo;Hwang, Seon-Hwan;Park, Jong-Won;Kim, Yong-Hyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.80-83
    • /
    • 2022
  • This paper proposes an initial rotor polarity detection algorithm of a single-phase permanent magnet synchronous motor (SP-PMSM) related to stable open-loop starting for sensorless operation. Generally, the SP-PMSM needs an asymmetric air-gap structure to can avoid the initial starting failure at zero torque point. Therefore, the rotor polarity information can be obtained by using the DC offset current direction of a stator current through a high frequency voltage injection into an SP-PMSM with an asymmetric air gap. In this paper, the proposed rotor initial polarity detection algorithm is verified through several experimental results.

A study on the process optimization of microcellular foaming injection molded air-conditioner drain pen (화학적 초미세 발포 사출성형을 이용한 에어컨 드레인 펜의 공정 최적화에 대한 연구)

  • Kim, Joo-Kwon;Kwak, Jae-Seob;Kim, Jun-Min;Lee, Jun-Han;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • In this study, we applied microcellular foaming injection molding process to improve the performance of system air-conditioner drain fan which had been produced by injection molding process and studied the optimization of process conditions through 6-sigma process and response surface method (RSM) to reduce weight and deformation of products. Additive type, melt temperature, mold temperature, and injection screw shape were selected as the factor affecting the weight and deformation of the products by carrying out analysis of trivial many through ANOVA and design of experiment (DOE) method. Among the effect factor, we set the addictive type to Long G/F and screw shape to foaming screw which had the highest level of weight reduction and deformation reduction. The amount of foaming agent gas was set at 60 ml, which was the limit beyond which the weight of product did not decrease any more. For melt temperature and mold temperature, we studied the conditions where both weight and deformation were minimized using the RSM. As a result, we set the melt temperature to $250^{\circ}C$, fixed mold temperature to $20^{\circ}C$, and moving mold temperature to $40^{\circ}C$. The improvement effect was analyzed by appling the selected optimal conditions to the production process using the microcellular foaming injection molding. The results showed that the mean weight of product was measured to be 1,420g which was 19% lower than that measured in the current process. The standard deviations of the weights were found to be similar to those in the current process and it showed a low dispersion. The mean deformation was measured to be 0.9237mm, which represented a 57% reduction compared to the mean deformation in the current process, and the standard deviation decreased from 0.3298mm to 0.1398mm. Moreover, we analyzed the process capability for deformation, and the results showed that the short-term process capability increased from 2.73 to 6.60 which was even higher than targeted level of 6.0.